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Foreword

The book by Michel Grabisch is about a fascinating mathematical object that
has received different names and has been studied by different communities: set
functions, capacities, pseudo-Boolean functions, and cooperative games, to mention
just a few. Results on these objects were often proven several times, often under
slightly different forms, in different communities. The book has two main parts.

The first one is devoted to a detailed presentation of this mathematical object
and its main properties. In particular, Michel gives a detailed presentation of the
notion of core and of the integrals based on nonadditive measures. In this first part,
the learning curve is steep, but the reward is quite worth the effort. Many results
scattered in the literature are arranged and proved here in a unified framework. I
have no doubt that this first part will serve as a reference text for all persons working
in the field.

The second part deals with applications of this mathematical object. Three of
them are emphasized: decision-making under risk and uncertainty, multiple criteria
decision-making, and belief and plausibility measures in the spirit of Dempster and
Shafer. A reader interested in these areas of application can directly start reading the
book with one of these chapters. The style of exposition is such that the reader is
given many useful hints and precise references to the first part of the book. It will be
most useful to anyone willing to use the tools and concepts in his/her own research.

The book is quite rich and very pleasant to read. The technical parts are well
organized, and difficult points are always illustrated by figures and examples. The
application parts are lucidly written and should be accessible to many readers.

This should not be surprising. Michel has been a major figure in the area since
nearly 30 years. He has fully succeeded in transforming his deep knowledge of the
field into a very rich and quite readable text.

CNRS and Université Paris Dauphine Denis Bouyssou
Paris, France
March 2016
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Preface

Set functions are mappings that assign to subsets of a universal set a real number
and appear in many fields of mathematics (pure and applied) and computer sciences:
combinatorics, measure and integration theory, combinatorial optimization, relia-
bility, graph theory, cryptography, operations research in general, decision theory,
game theory, etc. While additive nonnegative set functions (called measures) have
been studied in depth and from a long time in measure theory, nonadditive set
functions received less attention and only from, roughly speaking, the last 50 or
60 years. As the foregoing list shows, (nonadditive) set functions appeared in many
different fields, under different names, and most often in an independent way. As
far as possible, we have tried to give the historical origins of the concepts presented
in this monograph. One of the most prominent seminal work is undoubtedly the one
of Gustave Choquet, who proposed in 1953 the concept of capacity (monotone set
function). Largely ignored during several decades, reinvented in 1974 by Michio
Sugeno under the name fuzzy measures, capacities have become a central tool
in all areas of decision-making, in particular, owing to the pioneering work of
David Schmeidler in 1986. At the same time of Choquet’s work on capacities,
Lloyd Shapley studied another type of set functions, namely, transferable utility
games in characteristic form (which we call here “game” for brevity), introduced
by John von Neumann and Oskar Morgenstern, giving rise to what is known
today as cooperative game theory. Submodular games happened to be of particular
importance in combinatorial optimization through the work of Jack Edmonds, and
many results concerning this class of games have been shown independently in both
domains. Lastly, set functions, viewed as real-valued functions on the vertices of the
unit hypercube, have been studied in the 1960s by Peter Hammer under the name
pseudo-Boolean functions and constitute an important tool in operations research.
This brief historical perspective, first, explains the title of this book, which is a
compromise between the laconic “set functions” and the verbose “set functions,
capacities, games, and pseudo-Boolean functions in decision-making, game theory,
and operations research,” and, second, gives an idea about the difficulty to have
a clear view about what is known on set functions, from a mathematical point of
view. As it is common in sciences and especially in our times where specialization

vii



viii Preface

reigns (a feature that will certainly worsen with the mania of evaluation and
bibliometrics), scientific communities work independently and ignore that some of
them share the same (mathematical) concerns. This book is an attempt to give a
unified view of set functions and their avatars in the above-mentioned fields, mainly
decision-making, cooperative game theory, and operations research, focusing on
mathematical properties and presented in a way which is free of any particular
applicative context. I mainly work with a finite universal set, first because most
of the application fields concerned here consider finite sets (with the exception
of decision under uncertainty and risk) and second because infinite sets require
radically different mathematical tools, in the present case, close to those of measure
theory (needless to say, a rigorous treatment of this would require a second volume,
at least as thick as this one, a task which is probably beyond my capabilities!). The
seven chapters are divided into three parts:

• Chapter 1 (introductive) establishes the notation and gathers the main mathemat-
ical ingredients which are necessary to understand the book.

• Chapters 2–4 (fundamental), which represent almost 2/3 of the book, form the
mathematical core of the book. They give the mathematical properties of set
functions, games, and capacities (Chap. 2), of the core of games, that is, the set of
measures dominating a given game (Chap. 3), and of the various integrals defined
w.r.t. games and capacities, mainly the Choquet and Sugeno integrals. At very
few exceptions, all proofs are given.

• Chapters 5–7 (applicative) are devoted to applied domains: decision under
risk and uncertainty (Chap. 5), decision with multiple criteria (Chap. 6), and
Dempster-Shafer and possibility theory (Chap. 7). Clearly, each of these topics
would have required a whole book, and at least for the two first ones, already
many books are available on the topic. My philosophy was therefore different
from the other chapters, and I tried to emphasize there the use of capacities. For
these reasons, few proofs are given, but those given concern results which are
either new or difficult to find in the literature. Chapter 7 is a bit in the spirit of
the fundamental chapters, and therefore almost all proofs are provided. This is
because, unlike the two chapters on decision-making, the topic is not so well
known and still lacks comprehensive monographs.

The applicative chapters can be read independently from one another. It is also
possible to read them without having studied in depth the fundamental chapters,
because necessary concepts and results from these chapters are always clearly
indicated and referenced.

The idea of writing this book germinated in my mind many years ago while
teaching a course on capacities and Choquet integral applied to decision-making to
second year master’s students. I started the writing in 2012 and realized that it will
take much time and go far beyond the initial project, when I saw that the first three
pages of my handwritten lecture notes developed little by little into the hundred
pages of Chap. 2. Anyway, the trip through the world of set functions was long,
exhausting, but fascinating. Such a trip would have never existed if Prof. Michio
Sugeno would not have permitted me to stay 1 year in his laboratory in 1989–1990,
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where I discovered his work on fuzzy measures and fuzzy integrals. I owe him to
have introduced me to this beautiful world, which has become my main topic of
research, and for this, I would like to express my most sincere gratitude to him.
Many thanks are due also to his colleague of that time Toshiaki Murofushi, from
whom I learned so much. My thoughts go also to the late Jean-Yves Jaffray and
Ivan Kramosil, who were outstanding scientists in this domain and good friends.

I would like to thank many colleagues who have accepted to spend time
in reading parts of this book. Needless to say, they greatly contributed to the
quality of the book. In particular, many thanks are due to Alain Chateauneuf,
Miguel Couceiro, Yves Crama, Denis Feyel, Peter Klement, Ehud Lehrer, Jean-
Luc Marichal, Massimo Marinacci, Michel Maurin, Radko Mesiar, Pedro Miranda,
Bernard Monjardet, Hans Peters, and Peter Sudhölter. Special thanks go to Ulrich
Faigle for providing a proof of Theorem 3.24 and material on Walsh basis; Tomáš
Kroupa for providing material on the Fourier transform and drawing my attention to
the cone of supermodular games; Peter Wakker for invaluable comments on Chap. 5
(as well as on English!); Denis Bouyssou, Christophe Labreuche, Patrice Perny, and
Marc Pirlot for in-depth discussion on Chap. 6; and finally to Thierry Denœux and
Didier Dubois for fruitful discussion on Chap. 7 and drawing my attention to the
possibilistic core, as well as to the ontic vs. epistemic view of sets.

This long task of writing would not have been possible without enough free time
to do it and without the support of my institution. My sincere gratitude goes to
Bernard Cornet, head of the research unit, and to Institut Universitaire de France,
for having protected me against too many administrative and teaching tasks. Last but
not least, countless thanks are due to my wife, Agnieszka Rusinowska, researcher
in mathematical economics, for her unfailing support, understanding, and love, as
well as for many comments on the last three chapters.

Despite all my efforts (and those of my colleagues), the book may contain typos,
errors, gaps, and inaccuracies. Readers are encouraged to report them to me for
future editions (if any), and all that remains for me now is to wish the readers a nice
trip in the world of set functions.

Paris, France Michel Grabisch
January 2016
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Chapter 1
Introduction

We introduce in this chapter the notation used throughout the book (see also the
list of symbols), as well as the necessary mathematical background to make the
book self-contained. Section 1.2 gives useful results from combinatorics, some
of them being quite standard while some others are specific, and most often
proofs are provided. The rest of the chapter (Sect. 1.3) gives condensed summaries
about binary relations, partially ordered sets, inequalities and polyhedra, linear
programming, convexity, convex optimization, etc. Of course, no proof is provided
there and readers who are unfamiliar with these topics and finding the exposition
rather dry should consult the mentioned references.

1.1 Notation

(i) The set of positive integers is denoted by N, while N0 denotes the set
of nonnegative integers. As usual, C;Q;R;Z denote the set of complex,
rational, real numbers, and integers, respectively;

(ii) Closed intervals of numbers are denoted by Œx; y�, while open intervals are
denoted by �x; yŒ, and semi-open intervals by �x; y� and Œx; yŒ;

(iii) 2X is the power set of X; i.e., 2X D fA � Xg;
(iv) For two real-valued functions f ; g on some space X, we write f > g if f .x/ >

g.x/ for all x 2 X. Similarly, f > 0 means that f .x/ > 0 for all x 2 X;
(v) The domain and range of a function f are denoted by dom f and ran f . The

support of a function f valued on RC is the subset of its domain where the
function is positive. It is denoted by supp. f /;

(vi) The identity function is denoted by Id;

© Springer International Publishing Switzerland 2016
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(vii) The signum function is defined from R to f�1; 0; 1g as

sign .x/ D

8
ˆ̂
<

ˆ̂
:

1 if x > 0

0 if x D 0

�1 if x < 0I

(viii) We do not use any special notation for vectors and matrices, except for the
zero vector, denoted by 0, and the vector whose all coordinates are equal to
1, denoted by 1. Whether x denotes a single variable or a vector should be
clear from context. If x is a vector, it is meant that it is a column vector,
and its components are denoted by x1; x2; : : :. Transposition is indicated
by �>. Hence x> D .x1; : : : ; xn/ denotes a row vector. The inner product
of two vectors x; y is denoted by hx; yi and is taken as x>y unless otherwise
indicated. For n-dimensional real vectors, we take hx; yi D Pn

iD1 xiyi;
(ix) As a consequence of (iv), for two vectors x; y 2 R

n, x 6 y means that xi 6 yi

for i D 1; : : : ; n. We write x < y if x 6 y and xi < yi for some i 2 f1; : : : ; ng,
and we write x � y if xi < yi for i D 1; : : : ; n;

(x) For a vector x 2 R
X and Y � X, the vector xjY is the restriction of x to Y. The

same notation is used for functions: the restriction of f W X ! R to Y � X is
denoted by fjY , with fjY W Y ! R, y 2 Y 7! fjY .y/ D f .y/;

(xi) For a vector x 2 R
X and Y � X, we may write for simplicity x D .xY ; x�Y /

instead of .xjY ; xjXnY/. Similarly, for two vectors x; z 2 R
X , we write

.xY ; z�Y/ instead of .xjY ; zjXnY /;
(xii) The set f1; : : : ; ng is sometimes denoted by Œn�;

(xiii) Finite families of elements x1; x2; : : : ; xn are denoted by fxigiD1;:::;n, while
countable families x1; : : : ; x2; : : : are denoted by fxng;

(xiv) For any finite set N, the set of permutations on N is denoted by S.N/, or
simply S.n/ if jNj D n;

(xv) The characteristic function of a set A is denoted by 1A;
(xvi) As far as possible, sets are denoted by capital letters, like A;B; S;T; : : :,

elements of sets by small letters, like i; j; x; y; : : :, and collections of sets are
denoted by calligraphic capital letters, like A;B;F ; : : :. We sometimes omit
braces for singletons, writing A [ i instead of A [ fig, and so on;

(xvii) The complement of a set A is denoted by Ac whenever the universal set
is understood. Set inclusion is denoted by �, while � denotes proper
inclusion. Whenever convenient, cardinalities of sets A;B;C are denoted by
corresponding small letters a; b; c;

(xviii) The set interval ŒA;B� with A � B � X is defined by ŒA;B� D fC � X W
A � C � Bg. We use as well the variants ŒA;BŒ, �A;B�, and �A;BŒ as for real
intervals;

(xix) A;B being subsets of X, A n B D fx 2 A W x 62 Bg is the set difference.
The symmetric difference of sets is denoted by A�B D .A n B/[ .B n A/ D
.A [ B/ n .A \ B/;
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(xx) _;^ are lattice supremum and infimum. When applied to real numbers, the
usual ordering on real numbers is meant, hence they reduce to maximum
and minimum respectively when there is a finite number of arguments;

(xxi) Useful conventions:
P

i2¿ xi D 0,
Q

i2¿ xi D 1, where the xi’s are real
numbers. Considering quantities x1; x2; : : : defined on an interval I � R,
we set ^i2¿xi D W

I, _i2¿xi D V
I, where

W
I;
V

I are respectively the
supremum and infimum of I. Also, 0Š D 1.

1.2 General Technical Results

We begin by some useful combinatorial formulas.

Lemma 1.1 Let X be any finite nonempty set.

(i) For every set interval ŒA;B�, A;B � X

X

C2ŒA;B�
.�1/jCnAj D

X

C2ŒA;B�
.�1/jBnCj D

(
0; if A � B

1; if A D B:
(1.1)

(ii) For every positive integer n

kX

`D0
.�1/`

 
n

`

!

D .�1/k
 

n � 1

k

!

.k < n/: (1.2)

For k D n,
Pn

`D0.�1/`
�n
`

� D .1 � 1/n D 0.
(iii) For every set interval ŒA;B� in X, any integer k such that jAj 6 k < jBj:

X

C2ŒA;B�
jCj6k

.�1/jCnAj D .�1/k�jAj
 

jB n Aj � 1

k � jAj

!

:

(iv) For all integers n; k > 0

nX

jD0

 
n

j

!

.�1/ j 1

k C j C 1
D nŠkŠ

.n C k C 1/Š
:

(v) For all integers n > 0; k > n

nX

jD0

 
n

j

!

.�1/ j 1

k � j
D .�1/n nŠ.k � n � 1/Š

kŠ
:
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(vi) For every set interval ŒA;B�, A;B � X

X

C2ŒA;B�
.�2/jCnAj D

X

C2ŒA;B�
.�2/jBnCj D .�1/jBnAj:

Proof

(i) The result is clear if A D B. Suppose A ¤ B and set jB n Aj DW n.

X

C2ŒA;B�
.�1/jCnAj D

X

C2Œ¿;BnA�

.�1/jCj

D
nX

`D0

X

C2Œ¿;BnA�
jCjD`

.�1/`

D
nX

`D0

 
n

`

!

.�1/`

D .1 � 1/n D 0:

The second formula holds by
�n
`

� D � n
n�`
�
.

(ii) Suppose that k is odd. The formula is obviously true for k D 1. Assuming the
formula is valid till some k < n � 1, let us prove it for k C 1. We get:

kC1X

`D0
.�1/`

 
n

`

!

D �
 

n � 1

k

!

C
 

n

k C 1

!

D .n � 1/Š
kŠ.n � k � 1/Š

�
� 1C n

k C 1

�

D
 

n � 1

k C 1

!

:

For k even, the proof is similar.
(iii) Apply (ii).
(iv) (Denneberg and Grabisch [82]) Consider the shift and identity operators S;E

acting on any function f defined on N0: S f .k/ D f .k C 1/ and E f .k/ D f .k/,
and the special function f .k/ D 1

kC1 . Since S and E commute, the binomial
formula applies:

..E � S/n f /.k/ D
nX

jD0

 
n

j

!

.�1/ j.Sj f /.k/ D
nX

jD0

 
n

j

!

.�1/ j 1

k C j C 1
:
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It remains to prove that

..E � S/n f /.k/ D nŠkŠ

.n C k C 1/Š
: (1.3)

We do it by induction on n. The case n D 0 is obvious. Suppose (1.3) holds.
Applying E � S to (1.3) gives Eq. (1.3) for n C 1:

..E � S/nC1 f /.k/ D nŠkŠ

.n C k C 1/Š
� nŠ.k C 1/Š

.n C .k C 1/C 1/Š

D .n C 1/ŠkŠ

..n C 1/C k C 1/Š
:

(v) The formula can be proved similarly to (iv), by considering the negative shift
operator N defined by N f .k/ D f .k � 1/, applied at most k � 1 times on the
function f .k/ D 1

k�1 , k > 1.
(vi) Proceeding as for (i), this amounts to showing that

nX

`D0

 
n

`

!

.�2/` D .�1/n:

But this is immediate because
Pn

`D0
�n
`

�
.�2/` D .1� 2/n.

ut
Lemma 1.2 Let n 2 N be fixed. For any A � Œn�, the following holds

Z

Œ0;1�n

^

i2A

xi d x D 1

jAj C 1
:

Proof Observe first that we can assume A D Œn�. Next, defining the simplices

B� D fx 2 Œ0; 1�n W x�.1/ 6 � � � 6 x�.n/g

for all permutations � on Œn�, we obtain

Z

Œ0;1�n

^

i2Œn�
xi d x D

X

�2S.n/

Z

B�
x�.1/ d x

D
X

�2S.n/

Z 1

0

Z x�.n/

0

� � �
Z x�.2/

0

x�.1/ d x�.1/ � � � d x�.n/

D
X

�2S.n/

1

.n C 1/Š
D 1

n C 1
:

ut
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The Bernoulli numbers1 are defined recursively by

Bn D � 1

n C 1

n�1X

kD0

 
n C 1

k

!

Bk .n 2 N/; (1.4)

starting with B0 D 1. The first elements of the sequence are

B0 D 1;B1 D �1
2
;B2 D 1

6
;B3 D 0;B4 D � 1

30
;B5 D 0;B6 D 1

42
; : : : ;

and B2mC1 D 0 for m > 1. The Bernoulli polynomials are defined by

Bn.x/ D
nX

kD0

 
n

k

!

Bkxn�k .n 2 N0; x 2 R/:

These polynomials satisfy the following properties (see, e.g., Abramowitz and
Stegun [1]):

Bn.0/ D Bn .n 2 N0/ (1.5)

Bn.1/ D .�1/nBn .n 2 N0/ (1.6)

Bn

�1

2

�
D
� 1

2n�1 � 1
�

Bn .n 2 N0/ (1.7)

Bn.x C y/ D
nX

kD0

 
n

k

!

Bk.x/y
n�k .n 2 N0; x; y 2 R/ (1.8)

Z x

a
Bn.t/ dt D BnC1.x/� BnC1.a/

n C 1
.n 2 N/ (1.9)

Bn.x C 1/� Bn.x/ D nxn�1 .n 2 N0/: (1.10)

Lemma 1.3 (Grabisch et al. [178]) For all S;K � Œn� such that S � K, we have

X

T2ŒS;K�

1

k � t C 1
Bt�s.x/ D xk�s .x 2 Œ0; 1�/:

1These numbers were discovered by the Swiss mathematician Jakob Bernoulli (1654–1705), born
in Basel. The Bernoulli family has produced many famous mathematicians, artists and scientists,
whose Jakob is the oldest representant. The Bernoulli numbers appear in the formulas for the sum
of powers of the first positive integers, and they were posthumously published in 1713 in his Ars
Conjectandi. They were also discovered independently by the Japanese mathematician Seki Kōwa
(1642–1708), and published, also posthumously, in 1712.
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Proof We have

X

T2ŒS;K�

1

k � t C 1
Bt�s.x/ D

kX

tDs

 
k � s

t � s

!
1

k � t C 1
Bt�s.x/

D
k�sX

`D0

 
k � s

`

!
1

k � s � `C 1
B`.x/

D
Z 1

0

k�sX

`D0

 
k � s

`

!

B`.x/y
k�s�` dy

D
Z 1

0

Bk�s.x C y/ dy .by 1.8/

D Bk�sC1.x C 1/� Bk�sC1.x/
k � s C 1

.by 1.9/

D xk�s .by 1.10/:

ut

1.3 Mathematical Prerequisites

1.3.1 Binary Relations and Orders

Let A be a nonempty set. A binary relation on A is a subset R of A � A. The fact
that .a; b/ 2 R for some a; b 2 A is also denoted by aRb. A binary relation R is
reflexive if aRa for all a 2 A. It is complete if for any a; b 2 A, either aRb or bRa
holds, or both. Note that completeness implies reflexivity. A binary relation R is
antisymmetric if aRb and bRa imply a D b, and it is transitive if for all a; b; c 2 A,
aRb and bRc imply aRc.

A preorder is a reflexive and transitive binary relation, often denoted by �, or 4,
or 6. A common usage is to write a 6� b if a � b is not true (and similarly a 64 b or
a 66 b,. . . ). If a and b in A are such that a 6� b and b 6� a, then a and b are said to
be incomparable. A partial order is an antisymmetric preorder. If the partial order
is in addition complete, then it is called a linear order or total order. Taking A D N,
we have for example the following binary relations:

(i) a � b if a 	 r mod .5/, b 	 s mod .5/ and r 6 s, is a preorder, but not a
partial order;

(ii) a 6 b where 6 is the usual comparison between numbers, is a linear order;
(iii) aRb if a divides b is a partial order, but not a linear order.
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A binary relation R is symmetric if for any a; b 2 A, aRb implies bRa. It is
asymmetric if for all a; b 2 A, aRb implies that bRa does not hold.

Taking any preorder 4 on A, we write a 
 b if a 4 b and b 64 a. The binary
relation 
 is called the asymmetric part of 4. Similarly, we write a � b if a 4 b
and b 4 a both hold, and � is the symmetric part of 4. The symmetric part is
reflexive, symmetric and transitive; such a binary relation is called an equivalence
relation. Taking any a 2 A, the equivalence class of a, denoted by Œa�, is the set
fb 2 A W b � ag. Then A can be partitioned into equivalence classes, and the set of
all equivalence classes, called the quotient set, is denoted by A=�.

1.3.2 Partially Ordered Sets and Lattices

(See, e.g., Birkhoff [30], Caspard et al. [44], Davey and Priestley [67], Grätzer
[185].) A partially ordered set, or poset for short, is a pair .P;�/ where P is a
nonempty set and � a partial order on P. The dual order of � is denoted by � or �@,
and is defined by x � y if and only if y � x. The notation P@ means the dual poset;
i.e., the set P endowed with the dual order �@. A function f from a poset .P;�/
to another poset .P0;�0/ is said to be isotone if for every x; y 2 P, x � y implies
f .x/ �0 f .y/. It is antitone if the reverse inequality holds. An isomorphism between
two posets .P;�/ and .P0;�0/ is a bijection (one-to-one and onto) f W P ! P0 such
that x � y , f .x/ �0 f .y/ for every x; y 2 P. If an isomorphism exists between two
posets, they are said to be isomorphic. When P is isomorphic to P@, P is said to be
autodual.

Minimal Elements, Lower Bounds and the Like x 2 P is a minimal element
(respectively, a maximal element) if there is no y 2 P such that y 
 x (respectively,
x 
 y). An element x 2 P is the (necessarily unique) greatest element (respectively,
the least element) of P if for every y 2 P, we have y � x (respectively, x � y). An
upper bound (respectively, a lower bound) of a subset Q � P is an element x 2 P
satisfying y � x (respectively, x � y) for all y 2 Q. The supremum (respectively, the
infimum) of Q � P, if it exists, is the least upper bound (i.e., the least element of the
set of all upper bounds) of Q (respectively, the greatest lower bound of Q). There are
denoted respectively by

W
Q,
V

Q. The supremum (a.k.a. join) and infimum (a.k.a.
meet) of x; y 2 P are denoted by x _ y; x ^ y respectively, and similarly for any finite
number of elements. When � is set inclusion, and supremum and infimum happen
to be union and intersection, the notation

S
Q;
T

Q can be used as well.

Lattices A poset .L;�/ such that the supremum and the infimum of any two
elements in L exist is called a lattice. If only the supremum (respectively, the
infimum) exists, it is called an upper semilattice (respectively, a lower semilattice).
The lattice is complete if

W
Q;
V

Q exist for every Q � L. Any finite lattice is
complete. If L is complete, then it has a greatest and a least element, respectively
called the top and bottom of the lattice. We give two remarkable examples of lattices,
useful in the sequel:
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(i) Let X be any finite nonempty set. Then .2X;�/, the set of all subsets of X
endowed with the inclusion relation, is a lattice (more precisely, a Boolean
lattice2). Its top and bottom elements are respectively X and ¿, and _;^ are
simply [;\.

(ii) Consider again a finite nonempty set X D fx1; : : : ; xng. A partition of X is a
family of nonempty subsets A1; : : : ;Aq of X, called the blocks of the partition,
satisfying Ai \ Aj D ¿ for all i; j 2 f1; : : : ; qg, i ¤ j, and

Sq
iD1 Ai D X.

The set of all partitions of X is denoted by ….X/, with generic elements
�; � 0; : : :. We endow ….X/ with the coarsening order relation 6 defined as
follows. For any two partitions � D fA1; : : : ;Amg; � 0 D fA0

1; : : : ;A
0
m0g, � is

coarser than � 0 (written � 0 6 �) if for each j0 2 f1; : : : ;m0g, there exists
j 2 f1; : : : ;mg such that A0

j0 � Aj. The top element is fXg while the bottom
element is ffx1g; : : : ; fxngg. The supremum and infimum of � D fA1; : : : ;Amg
and � 0 D fA0

1; : : : ;A
0
m0g are given by � ^ � 0 D fAj \ A0

j0 j Aj \ A0
j0 ¤ ¿g and

x.� _ � 0/y ,
9x D u0; u1; : : : ; ut D y such that ui.�/uiC1 or ui.�

0/uiC1 for all i;

for any x; y 2 X, where x.�/y means that x; y belongs to the same block in �
(see, e.g., Aigner [2]).

A subset Q � L of a lattice .L;�/ is a sublattice of it if for all x; y 2 Q, x _ y and
x ^ y belong to Q.

Covering Relation, Chains Let .P;�/ be a poset. For x; y 2 P, we say that x
covers y, and we denote it by y 
� x, if y 
 x and there is no z 2 P satisfying
y 
 z 
 x. Alternatively, we may denote this by x � y. When the partial order is set
inclusion, we use �� and �� .

An antichain K in P is a subset of P such that any two distinct elements in K
are incomparable. On the other hand, a chain C in P is a subset of P where all
elements are pairwise comparable; i.e., for any two elements x; y 2 C, either x � y
or y � x. The chain is maximal if no other chain contains it, or equivalently, if
C D fx1; : : : ; xqg, with x1 
� x2 
� � � � 
� xq, and x1 is a minimal element of P,
while xq is a maximal element. The length of C is q � 1. The height of an element
x 2 P, denoted by h.x/, is the length of a longest chain from a minimal element of
P to x. The height of a poset .P;�/, denoted by h.P;�/, is the maximum of h.x/
taken over all elements x 2 P. Equivalently, it is the length of a longest (maximal)
chain in P.

2A lattice L is Boolean if it is distributive (see below) and complemented, i.e., every element x 2 L
has a complement x0 2 L, which is an element satisfying x ^ x0 D ? and x _ x0 D >, where ?;>
are the bottom and top elements of L. In the finite case, every Boolean lattice is isomorphic to 2X

for some X.
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A poset .P;�/ satisfies the Jordan-Dedekind chain condition if for any x; y 2 P
s.t. x � y, any maximal chain from x to y has the same length (if .P;�/ has a least
element, an equivalent definition is: x 
� y implies h.x/C 1 D h.y/, 8x; y 2 P).

The Hasse diagram of a poset .P;�/ is a graphic representation of it, with nodes
figuring elements of P, and links figuring the covering relation, i.e., a link relates x
and y if x 
� y, with x placed below y. The Hasse diagrams of the lattices .2X;�/
and .….X/;6/ with X D f1; 2; 3; 4g are given on Fig. 1.1. Sets are given without
commas and brackets, i.e., 123 stands for f1; 2; 3g and 12,34 for ff1; 2g; f3; 4gg, and
this convention will be used throughout the book.

∅

12 3 4

12 13 14 23 24 34

123 124 134 234

1234

1,2,3,4

12,3,4 1,2,34 13,2,4 1,3,24 1,4,23 14,2,3

12,34 123,4 134,2 13,24 124,3 1,234 14,23

1234

Fig. 1.1 Hasse diagram of the lattices .2X ;�/ (left) and .….X/;6/ (right) with X D f1; 2; 3; 4g

Downsets and Ideals A downset of a poset .P;�/ is a subset Q of P such that
x 2 Q and y � x imply y 2 Q. We denote by O.P;�/ or simply O.P/ the set of
downsets of .P;�/. Finite unions and intersections of downsets are downsets. If a
downset is nonempty and closed under _, it is called an ideal. For any x 2 P, the
downset #x defined by #x D fy 2 P W y � xg is an ideal called the principal ideal
of x. In a finite poset, all ideals are principal ideals. For any x; y 2 P,

#x [ #y � #.x _ y/ ; #x \ #y D #.x ^ y/ :

Also, x � y implies #x � #y .
Dual definitions of upsets, filters, principal filters denoted by "x , and results are

obtained when � is replaced by �, the dual order.
For any Q � P,

#Q D fy 2 P W y � x for some x 2 Qg D
[

x2Q

#x

is the downset generated by Q (dually for "Q ).
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Join- and Meet-Irreducible Elements In a lattice .L;�/, an element x is said
to be join-irreducible (respectively, meet-irreducible) if it cannot be written as the
supremum (respectively, the infimum) of other elements, and it is not the bottom
(respectively, the top) element. When L is finite, this is equivalent to say that
a join-irreducible (respectively, meet-irreducible) element covers (respectively, is
covered by) only one element. The set of join-irreducible elements is denoted by
J .L/, while M.L/ denotes the set of meet-irreducible elements. An atom is a
join-irreducible element covering the bottom element. Dually, a coatom is a meet-
irreducible element covered by the top element.

We introduce the mapping � W L ! O.J .L//, defined by �.x/ D f j 2 J .L/ W
j � xg. This mapping is one-to-one, satisfies x D W

�.x/ for all x 2 X, and

�.x _ y/ � �.x/[ �.y/; �.x ^ y/ D �.x/\ �.y/ .x; y 2 L/: (1.11)

Similarly, the mapping � W L ! O.M.L// defined by �.x/ D fm 2 M.L/ W m �
xg possessing dual properties can be introduced as well.

Modular and Distributive Lattices A lattice .L;�/ is lower semimodular if for
all x; y 2 L, x 
� x _ y and y 
� x _ y imply x ^ y 
� x and x ^ y 
� y. It is upper
semimodular if x ^ y 
� x and x ^ y 
� y imply x 
� x _ y and y 
� x _ y, and it is
modular if it is both lower and upper semimodular. A lattice is modular if and only
if it does not contain the lattice N5 as a sublattice (Fig. 1.2). A lattice of finite height
is upper semimodular if and only if it satisfies the Jordan-Dedekind chain condition
and its height function is submodular; i.e., h.x _ y/ C h.x ^ y/ 6 h.x/ C h.y/ for
every x; y 2 L.

A lattice .L;�/ is distributive if _;^ obey distributivity; i.e., x _ .y ^ z/ D
.x _ y/^ .x _ z/ for every x; y; z 2 L (equivalently, _;^ can be inverted). If a lattice
is distributive, then it is modular. A modular lattice is distributive if and only if it
does not contain M3 as a sublattice (see Fig. 1.2). As a consequence, a lattice is
distributive if and only if it neither contains N5 nor M3.

Fig. 1.2 The lattices M3 (left) and N5 (right)

In a distributive lattice .L;�/, jJ .L/j D jM.L/j D h.L/. In addition, when L
is finite, the set of join-irreducible elements alone permits to reconstruct the whole



12 1 Introduction

lattice, and for this reason can be considered to be a kind of basis. Formally, this is
expressed in the following theorem.

Theorem 1.4 (Representation of a distributive lattice by its join-irreducible
elements) (Birkhoff [29]) Let L be a finite distributive lattice. Then the mapping
� W L ! O.J .L//; x 7! fi 2 J .L/ W i � xg is an isomorphism from .L;�/ to
.O.J .L//;�/.
As a consequence, equality holds in (1.11). Another way of expressing this theorem
is to say that the set of finite distributive lattices is in bijection with the set of
finite partially ordered sets. A similar result holds with meet-irreducible elements.
Another important property is that in a distributive lattice, there is a unique (in the
sense of inclusion) minimal representation of an element x 2 L by join-irreducible
elements. Due to the importance of this theorem in the sequel, we illustrate it by an
example (Fig. 1.3).

1 3

2

4

1

2

3

4

∅

1 3

123

3413

134

1234

Fig. 1.3 Left: a distributive lattice .L;�/. Join-irreducible elements are in red and labelled 1,
2, 3, 4. Middle: the poset .J .L/;�/ of join-irreducible elements. Right: the distributive lattice
.O.J .L//;�/ generated by the poset

Closure Systems and Operators Let X be a nonempty set. A collection C � 2X

is a closure system if X 2 C and it is closed under intersection. Elements of C are
called closed sets. A mapping � W .2X;�/ ! .2X;�/ is a closure operator if it
satisfies:

(i) A � �.A/ for all A � X;
(ii) � is isotone;

(iii) �.�.A// D �.A/ for all A � X.

Any closure operator � induces a closure system, where the set of closed sets is
the set of fixed points of � : �.A/ D A. Conversely, any closure system C induces a
closure operator defined by �.A/ D TfB W A � B;B 2 Cg. A closure system is a
complete lattice, with A ^ B D A \ B and A _ B D �.A [ B/.
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1.3.3 Cones and Convex Sets

(See, e.g., Aliprantis and Border [7], Fujishige [149, Chap. 1].) A convex set Z is a
subset of a vector space X closed under convex combinations; i.e., for all z; t 2 Z
and ˛ 2 Œ0; 1�, ˛z C .1 � ˛/t 2 Z. The convex hull of a set of points x1; : : : ; xn 2 X
is defined by

conv.x1; : : : ; xn/ D
n
˛1x

1 C � � � C ˛nxn W ˛1; : : : ; ˛n 2 Œ0; 1�;
nX

iD1
˛i D 1

o
:

A cone is a subset C of a vector space X such that x 2 C implies that ˛x 2 C for
all ˛ > 0. Note that a cone is a convex set that always contains 0. A cone is pointed
if it does not contain a line, i.e., a set of the form fx C ˛v W ˛ 2 Rg. Equivalently, a
cone is pointed if C \ .�C/ D f0g.

The conic hull of a set of points x1; : : : ; xn 2 X is defined by

cone.x1; : : : ; xn/ D f˛1x1 C � � � C ˛nxn W ˛1; : : : ; ˛n 2 RCg:

A ray is a “half-line;” i.e., a set of the form fx C ˛v W ˛ 2 RCg, where v ¤ 0 is
the supporting vector of the ray. A cone can be seen as a set of rays passing through
0. A ray in a cone C is extremal if it cannot be expressed as a conic combination of
other rays of C. Then any cone is the conic combination of its extremal rays.

The following result is well-known.

Theorem 1.5 (Theorem of the separating hyperplane) Let Z � R
n be a convex

closed set, and x 2 R
n n Z. Then there exists y 2 R

n such that

hy; zi > hy; xi .z 2 Z/:

1.3.4 Linear Inequalities and Polyhedra

(See, e.g., Faigle et al. [136, Chap. 2, Sect. 4 and Chap. 3], Fujishige [149, Chap. 1],
Schrijver [290, Chap. 8], Ziegler [360].) We consider a set of linear inequalities and
equalities in n variables with real constants

nX

jD1
aijxj 6 bi .i 2 I/ (1.12)

nX

jD1
aijxj D bi .i 2 E/; (1.13)
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I;E being two disjoint index sets. This system defines an intersection of half-spaces
and hyperplanes, called a (closed convex) polyhedron because it is a convex set.

An extreme point or vertex of a polyhedron P is a point in P that cannot be
expressed as a convex combination of other points in P. Equivalently, x is an extreme
point of P if it is a solution of the system (1.12), (1.13), and it is the unique solution
of a subsystem of n equations

nX

jD1
aijxj D bi .i 2 V/

with V � I [E and jVj D n. A polyhedron is pointed if it contains an extreme point.
The recession cone C.P/ of a polyhedron P defined by (1.12) and (1.13) is a cone

defined by

nX

jD1
aijxj 6 0 .i 2 I/ (1.14)

nX

jD1
aijxj D 0 .i 2 E/: (1.15)

The recession cone is either a pointed cone (possibly reduced to f0g) or it contains
a line. The following basic properties are fundamental:

(i) P has rays (but no line) if and only if C.P/ is a pointed cone different from f0g.
Any non-zero solution of (1.14) and (1.15) is a ray;

(ii) P is pointed if and only if C.P/ does not contain a line, or equivalently, if the
system (1.15) and

nX

jD1
aijxj D 0 .i 2 I/

has 0 as unique solution.
(iii) P is a polytope (i.e., a bounded polyhedron) if and only if C.P/ D f0g.

A ray r in C.P/ is extremal if it satisfies (1.14) and (1.15) and the subsystem
of tight inequalities and equalities satisfied by r has rank n � 1 (more on rays in
Sect. 1.3.6).

The fundamental theorem of polyhedra asserts that any pointed polyhedron P
defined by a system (1.12) and (1.13) is the Minkowski sum of its recession cone
(generated by its extremal rays; this is the conic part of P) and the convex hull of its
extreme points (the convex part of P):

P D cone.r1; : : : ; rk/C conv.ext.P//
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where r1; : : : ; rk are the extremal rays of C.P/, and ext./ is the set of extreme points
of some convex set.

If P is not pointed, then it reduces to its recession cone up to a translation.
Finally, suppose that in the system (1.12) and (1.13) defining a polyhedron P,

the equalities in (1.13) are independent (i.e., P is .n � jEj/-dimensional). A p-
dimensional face (0 � p � n � jEj) of P is a set of points in P satisfying in addition
q D n � jEj � p independent equalities in (1.12). In particular, P itself is a face of
P (q D 0), a facet is a .n � jEj � 1/-dimensional face (q D 1), and a vertex is a
0-dimensional face (q D n � jEj). Clearly, no vertex can exist (i.e., P is not pointed)
if jIj < n � jEj.

Another fundamental result in linear inequalities is Farkas’ Lemma, which
characterizes the nonemptiness of a polyhedron.

Theorem 1.6 (Farkas’ lemma I) Consider a system of inequalities Ax 6 b, with
A a m � n matrix with real coefficients and b 2 R

m. Then the system has a solution
(i.e., the corresponding polyhedron is nonempty) if and only if for every nonnegative
vector y 2 R

mC such that y>A D 0>, we have y>b > 0.

If there are some equalities in the system, then the corresponding coordinates of y
are real-valued.

There exist several equivalent avatars of Farkas’ lemma. The following one is
very useful because it gives a sufficient and necessary condition to find redundant
inequalities in a system. Formally, we say that an inequality a>

0 x 6 b0 is implied
by or redundant in the system Ax 6 b, where A 2 R

m�n and b 2 R
m, if for every

x 2 R
n satisfying Ax 6 b, the inequality a>

0 x 6 b0 holds.

Theorem 1.7 (Farkas’ lemma II) Assume that the system Ax 6 b, with A 2 R
m�n

and b 2 R
m, has a solution. Then the inequality a>

0 x 6 b0 is implied by Ax 6 b if
and only if there exists a vector y 2 R

mC such that

y>A D a>
0 and y>b 6 b0:

Again, if there are some equalities in the system, then the corresponding coordinates
of y are real-valued.

1.3.5 Linear Programming

(See, e.g., Chvátal [54], Matoušek and Gärtner [238], Schrijver [290].) A linear
program (P) is an optimization problem whose objective function and constraints
are linear, for example:

max z D c>x
s.t. Ax 6 b

x > 0;
(1.16)
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with c; x 2 R
n, b 2 R

m, and A is an m � n dimensional real matrix. Variants
without the constraint x > 0, or with equality constraints Ax D b exist, and all
possible mixed cases (that is, some variables are nonnegative, and some inequalities
are equalities). Note that in any case, one can express any linear program in the
form (1.16), by expressing a real variable as the difference of two nonnegative
variables, and an equality a>x D b (with a 2 R

n) as two inequalities a>x 6 b and
�a>x 6 �b. We say that x 2 R

n is a feasible solution if x satisfies all inequalities in
(1.16). Supposing (P) has a feasible solution, we say that (P) is unbounded if z can
be unbounded over the feasible domain Ax 6 b; x > 0.

The dual program (D) of the linear program (1.16) (called the primal program)
is the linear program

min w D b>y
s.t. A>y > c

y > 0;
(1.17)

with y 2 R
m. The dual programs of the above-mentioned variants can be found

easily: for any equality constraint, the corresponding variable yi is a real variable,
while for a real variable xj, the corresponding constraint in the dual program is an
equality. The duality theorem asserts that w is always greater or equal to z, and at
the optimum, objective functions of the dual and primal programs are equal.

Theorem 1.8 (Duality theorem of linear programming) Consider the linear
program (1.16) and its dual program (1.17), with objective functions z D c>x and
w D b>y respectively. Then the following statements hold:

(i) (Duality theorem, weak form) For every feasible x 2 R
n; y 2 R

m, b>y > c>x;
(ii) (Duality theorem, strong form) The primal program has an optimal solution x�

if and only if the dual program has an optimal solution y�, and b>y� D c>x�
holds.

Note that if one of the program is unbounded, the other one has no solution.
A convenient way to check the optimality of a solution is to use complementary

slackness (a particular case of the Karush-Kuhn-Tucker conditions; see Sect. 1.3.8).

Theorem 1.9 (Complementary slackness) Consider a linear program (1.16) and
a solution x� to this program. Then x� is optimal if and only if there exists y� solution
of the dual program (1.17) such that y�

i D 0 for all i such that aix� < bi, where ai is
the ith row of matrix A, and

˛>
j y� D cj; 8j s.t. x�

j > 0;

where ˛j is the jth column of A.
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1.3.6 Cone Duality

The results in this section gives some more insight on cones (especially the recession
cone of polyhedra), and provides a geometric interpretation to linear programming
duality (Faigle et al. [136, Sect. 3.2]). Consider a matrix A 2 R

m�n and the cone
generated by the conic combination of the m rows of A, that is:

cone.A/ D fA>y W y 2 R
mCg:

Observe that for every x 2 R
n

Ax 6 0 , Œw>x 6 0; 8w 2 cone.A/�: (1.18)

The dual of a cone C � R
n is the cone

C� D fx 2 R
n W w>x 6 0;8w 2 Cg:

Taking C D cone.A/, (1.18) yields

cone.A/� D fx 2 R
n W Ax 6 0g:

(see Fig. 1.4 for an illustration).
Consider now the linear program max w>x s.t. Ax 6 0 and its dual program

min 0>y s.t. A>y D w, y > 0. The primal program has always 0 as feasible solution,
but it may be unbounded. Observe that the feasibility of the dual program expresses
that w 2 cone.A/. Hence, we have shown:

Lemma 1.10 Let A 2 R
m�n and w 2 R

n. The following statements are equiva-
lent:

• w>x is bounded over the dual cone cone.A/� D fx W Ax 6 0g;
• w 2 cone.A/;
• w>x � 0 for all x 2 cone.A/�.

The two first equivalences come from linear programming duality. The third
equivalence is obtained from the first one, by observing that x D 0 is the optimal
solution if and only if the primal is bounded, in which case w>x D 0. It can be also
obtained from the second one, by applying (1.18) to w (see Fig. 1.4 for a geometrical
interpretation).
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x1

x2

0

a1

a3

a2

cone(A)

cone(A)∗

Ax 0

w

Fig. 1.4 Cone duality and linear programming with n D 2;m D 3. Rows of the matrix A are
denoted by a1; a2; a3. The vector w is such that max w>x is bounded

1.3.7 Support Functions of Convex Sets

(See, e.g., Aliprantis and Border [7, Sect. 7.10], Schneider [288, Sect. 1.7.1] for a
more general exposition.)

Definition 1.11 A function f W Rn ! R is said to be:

(i) positively homogeneous if f .˛x/ D ˛f .x/, for every x 2 R
n and ˛ > 0;

(ii) superadditive if f .x C y/ > f .x/ C f .y/ for all x; y 2 R
n (subadditive if the

reverse inequality holds);
(iii) convex if

f .�x C .1 � �/y/ 6 �f .x/C .1 � �/f .y/

for every x; y 2 R
n and � 2 Œ0; 1� (concave if the reverse inequality holds).

Observe that under positive homogeneity, superadditivity (resp., subadditivity) is
equivalent to concavity (resp., convexity). Indeed, if f is superadditive,

f .�x C .1 � �/y/ > f .�x/C f ..1 � �/y/ D �f .x/C .1 � �/f .y/;

while f concave yields

f .x/C f .y/ D 1

2
f .2x/C 1

2
f .2y/ 6 f

�1

2
2x C 1

2
2y
�

D f .x C y/:
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Let f W Rn ! R be a concave function. The set

@ f .x/ D fv 2 R
n W f .y/ 6 f .x/C hv; y � xi 8y 2 R

ng (1.19)

is called the superdifferential of f at x. The subdifferential of f at x is defined with
the reverse inequality. Note that if f is positively homogeneous, @ f .0/ D fv 2 R

n W
f .y/ 6 hv; yi 8y 2 R

ng.
Let C � R

n be nonempty. The support function3 of C is a function hC W Rn !
Œ�1;C1Œ defined by

hC.x/ D inf
x02C

hx; x0i .x 2 R
n/:

The following result shows the duality between the support function and the
superdifferential.

Theorem 1.12 Let C be a nonempty closed convex subset of Rn. Then its support
function hC is positively homogeneous and concave, and C D @hC.0/.

Conversely, if f W Rn ! Œ�1;C1Œ is positively homogeneous and concave, then
its superdifferential @ f .0/ is a nonempty closed convex subset of Rn, and f D h@ f .0/.

1.3.8 Convex Optimization and Quadratic Programming

(See, e.g., Faigle et al. [136].) We consider the following optimization problem

min
x2Rn

f .x/

s.t. a>
i x D bi .i 2 I/

a>
j x 6 bj . j 2 J/

(1.20)

where f is a continuously differentiable convex function on R
n, and ai; aj 2 R

n,
i 2 I, j 2 J. Then a feasible point x 2 R

n is an optimal solution of (1.20) if and only
if it satisfies the Karush-Kuhn-Tucker (KKT) conditions:

r>f .x/C
X

i2I

�iai C
X

j2J.x/

	jaj D 0 (1.21)

for some �i 2 R and 	j > 0, where rf .x/ D .
@ f
@x1
.x/; : : : ; @ f

@xn
.x// is the gradient of

f , and J.x/ D f j 2 J W a>
j x D bjg corresponds to tight constraints.

3Usually, the support function is defined with sup instead of inf. In this case, in Theorem 1.12, the
subdifferential must be used.



20 1 Introduction

We apply this result to quadratic programming. A quadratic programming
problem is a problem of the type

min
x2Rn

f .x/ D 1
2
x>Qx � c>x

s.t. Ax 6 b
(1.22)

with Q 2 R
n�n is a symmetric matrix, c 2 R

n, b 2 R
m, and A 2 R

m�n. We say that Q
is positive semidefinite if x>Qx > 0 for all x 2 R

n, and positive definite if in addition
x>Qx D 0 if and only if x D 0 (and in this case Q is invertible). If Q is positive
semidefinite (respectively, positive definite), then its eigenvalues are nonnegative
(respectively, positive) and f .x/ is a convex (resp., strictly convex) function.

The problem is easy to solve in case of equality constraints Ax D b. Then an
optimal solution is a solution of the system

rf .x/ C �>A D 0>
Ax D b

or

�
Q A>
A 0

��
x
�

	

D
�

c
b

	

: (1.23)

If Q is positive definite and Ax D b has a solution, then there is a unique solution to
the KKT system, hence a unique optimal solution x�, given by

�
x�
�

	

D
�

Q A>
A 0

��1 �
c
b

	

: (1.24)

If Q is only positive semidefinite, the problem maybe unbounded, a situation that is
characterized by the existence of d 2 R

n satisfying

Qd D 0; Ad D 0; and c>d D 1:

1.3.9 Totally Unimodular Matrices and Polyhedron Integrality

(See, e.g., Schrijver [290, Chap. 19], [291, Chap. 5, Sects. 15, 16], [289, Chap. 8].)
A m � n matrix is totally unimodular if each square submatrix of A has determinant
equal to �1, 0 or C1. In particular, this implies that each entry is either �1, 0, or 1.

The main interest of totally unimodular matrices is that they characterize
polyhedron integrality. A polyhedron is integer if all its extreme points have integer
coordinates.

Theorem 1.13 Let A be a totally unimodular m � n matrix. Then for all integer
vectors b 2 R

m; c 2 R
n the polyhedra

P D fx W x > 0; Ax 6 bg; D D fy W y > 0; A>y > cg

are integer.
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The reciprocal (Hoffman-Kruskal theorem) says that if P is integer for every integer
vector b, then A is totally unimodular.

Total unimodularity is however not easy to check. An easy particular case arises
from directed graphs. Let G D .V;A/ be a directed graph; i.e., a set of vertices V
and a set of arcs A, where an arc is an ordered pair a D .x; y/ that links two vertices
x; y. Its vertex-arc incidence matrix M is defined as follows:

Mx;a D

8
ˆ̂
<

ˆ̂
:

C1; if a leaves x;

�1; if a enters x;

0; otherwise:

Thus, each column of M has exactly one C1 and one �1, the rest on the entries
being 0. Conversely, any such matrix defines a directed graph, and the next theorem
shows that these matrices are totally unimodular.

Theorem 1.14 The vertex-arc incidence matrix of any directed graph is totally
unimodular.

1.3.10 Riesz Spaces

(See, e.g., Aliprantis and Border [7, Chap. 8].) Let X be a vector space, and consider
a pointed cone C in X. Any pointed cone induces a partial order > on X as follows:
x > y if x � y 2 C. This order is said to be compatible with X if:

(i) x > y implies x C z > y C z for every z 2 X; and
(ii) x > y implies ˛x > ˛y for all ˛ > 0.

An ordered vector space X is a real vector space with an order relation > that is
compatible in the above sense. The set fx 2 X W x > 0g is a pointed cone, called the
positive cone of X, and denoted by XC or XC. Any vector in XC is called positive.

A Riesz space is an ordered vector space that is also a lattice. If x is an element
of a Riesz space, its positive part xC, negative part x�, and its absolute value jxj are
defined by

xC D x _ 0; x� D .�x/ _ 0; and jxj D x _ .�x/;

where _ is the supremum of the lattice. A norm k�k on a Riesz space X is an L-norm
if kx C yk D kxk C kyk for all x; y > 0 2 X. A Riesz space equipped with a L-norm
is called an AL-space (abstract Lebesgue space).
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1.3.11 Laplace and Fourier Transforms

Let f be a real-valued function whose support is RC. Its Laplace transform4 (see,
e.g., Abramowitz and Stegun [1], Gradshteyn and Ryzhik [183]) F D L. f / is a
function of the complex variable s defined by

F.s/ D
Z 1

0

e�st f .t/ dt .s 2 C;<s > s0/; (1.25)

where <s denotes the real part of s, and s0 2 R is defined as the lower bound of the
real numbers ˇ such that

lim
a!0

b!C1

Z b

a
e�ˇt f .t/ dt

is convergent. The Laplace transform is a linear invertible operator, which is
extremely useful for solving partial differential equations, due to the following
property:

L. f 0/ D sL. f / � f .0/ (1.26)

where f 0 is the derivative of f . Another remarkable property is that the convolution
product of two functions f ; g, defined by

. f � g/.t/ D
Z t

0

f .�/g.t � �/ d�; (1.27)

is turned into an ordinary product:

L. f � g/ D L. f /L.g/: (1.28)

We give some examples of Laplace transform of usual functions in Table 1.1. Recall
that functions are supposed to be zero-valued for negative real numbers. ı is the
Dirac function, that is, ı.0/ D 1 and ı.t/ D 0 for every t > 0.

The Fourier transform (see p.99 for a bibliographical notice) is a particular case
of the bilateral Laplace transform (i.e., where the integral in (1.25) is taken on
Œ�1;C1�), where s has the form s D i
 (
 2 R) or i2�� (� is interpreted as the
frequency).

4Pierre-Simon de Laplace (Beaumont-en-Auge, 1749 – Paris, 1827), French mathematician,
astronom and physicist. He gave the mathematical foundations of astronomy, contributed to
probability theory, and was the advocate of the determinism. What is called today the Laplace
transform was in fact discovered by Leonhard Euler.
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f .t/ (t > 0) F.s/ D L. f / s0

1
1

s
0

tn .n 2 N0/
nŠ

snC1
0

tne�at .n 2 N0/
nŠ

.s C a/nC1
�a

ı.t � �/ .� > 0/ e��s �1
Table 1.1 Laplace transform of usual functions



Chapter 2
Set Functions, Capacities and Games

This chapter opens the fundamental part of the book, focusing on mathematical
properties. It presents the main classes of set functions that will be considered
throughout the book, namely games (set functions vanishing on the empty set) and
capacities (monotone games). In the main part of this chapter (Sects. 2.1–2.18), we
consider set functions defined on a nonempty finite set X, where the domain of set
functions is the power set 2X . In Sect. 2.19 we briefly address the case of arbitrary
spaces and domains.

The length of the chapter and the variety of the topics addressed made the
task of organizing the chapter a bit difficult, and we hope that the readers will
not be lost into this forest of definitions and theorems. In order to let the readers
find more easily their way, we give a brief description of its content. After a
short introduction of several application domains and interpretations of games and
capacities (Sect. 2.4), we introduce the main properties (Sect. 2.7) and the main
families of capacities (Sect. 2.8). The fundamental concept of Möbius transform
is introduced in Sect. 2.10, as well as other important transforms, namely, the inter-
action transform, the Banzahf interaction transform and the co-Möbius transform in
Sect. 2.11. A table giving all conversion formulas between these transforms is given
in Appendix A. Section 2.12 gives a formal analysis of the class of linear invertible
transforms, and can be ignored at first reading. The important concept of k-additive
game is presented in Sect. 2.13. The geometrical and algebraic structure (polytope,
cone, vector space, etc.) of the most important classes of games and capacities
is studied in Sect. 2.15. In particular two bases of the vector space of games are
exhibited. The long Sect. 2.16 takes another point of view for set functions and
consider them as pseudo-Boolean functions, which permits to have a polynomial
representation of set functions. There, the Walsh basis (which is orthonormal) is
introduced, as well as the Fourier transform, which is fundamental in computer
sciences. The polynomial form of a set function is adequate to address the problem
of approximation (of a fixed degree), and of extension of a set function. Section 2.17
returns to the topic of bases and transforms, and show that the two notions are

© Springer International Publishing Switzerland 2016
M. Grabisch, Set Functions, Games and Capacities in Decision Making,
Theory and Decision Library C 46, DOI 10.1007/978-3-319-30690-2_2
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intimately related. A table summarizing all known bases and transforms is given
in Appendix A. Inclusion-exclusion coverings (Sect. 2.18) is related to the problem
of decomposing a game into a sum of simpler games. Lastly, Sect. 2.19 considers
games on infinite and finite universal sets X, whose domain is a subcollection of 2X

(called a set system).

2.1 Set Functions and Games

A set function on X is a mapping 
 W 2X ! R, assigning a real number to any subset
of X. A set function can be

(i) Additive if 
.A [ B/ D 
.A/C 
.B/ for every disjoint A;B 2 2X;
(ii) Monotone if 
.A/ 6 
.B/ whenever A � B;

(iii) Grounded if 
.¿/ D 0;
(iv) Normalized if 
.X/ D 1.

Note that an additive set function is uniquely determined by its value on elements
of X, because 
.A/ D P

x2A 
.fxg/.
Definition 2.1 A game v W 2X ! R is a grounded set function.

As far as possible, throughout the book we distinguish by their notation the type
of set functions (
 for general set functions, v for games and 	 for capacities, see
Definition 2.5 below).

We denote the set of games on X by G.X/. The set of set functions on X is simply
R
.2X/.
A game v is zero-normalized if v.fxg/ D 0 for every x 2 X. We can already

notice the following properties:

(i) If 
 > 0 (nonnegative) and additive, then 
 is monotone;
(ii) If 
 is additive, then 
.¿/ D 
.¿/C 
.¿/, which entails 
.¿/ D 0;

(iii) To any game v one can associate a zero-normalized game v0 D v � ˇ, with ˇ
an additive game defined by ˇ.fxg/ D v.fxg/ for every x 2 X.

To any set function 
 we associate its conjugate (a.k.a. dual) 
, which is a set
function defined by


.A/ D 
.X/� 
.Ac/ .A 2 2X/: (2.1)

Note that 
.¿/ D 
.X/ � 
.X/ D 0. The following properties are easy to show
(try!).

Theorem 2.2 Let 
 be a set function on X.

(i) If 
.¿/ D 0, then 
.X/ D 
.X/ and 
 D 
;
(ii) If 
 is monotone, then so is 
.

(iii) If 
 is additive, then 
 D 
 (
 is self-conjugate).
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Remark 2.3 The term “game” may appear strange, although it is commonly used
in decision theory and capacity theory. It comes from cooperative game theory
(see, e.g., Owen [263], Peleg and Sudhölter [267], Peters [268]). A game v (in its
full name, a transferable utility game in characteristic function form) represents
the gain that can be achieved by cooperation of the players (more on this in
Sect. 2.4). }

2.2 Measures

A measure is a nonnegative and additive set function. A normalized measure is
called a probability measure. A signed measure is an additive set function, that is,
it may take negative values. Measures are usually denoted by m, and M.X/ denotes
the set of measures on X.

Example 2.4 Let us give some easy examples of measures, apart from probability
measures.

(i) The counting measure mc just counts the elements in sets: mc.A/ D jAj for all
A 2 2X .

(ii) Measure of length, volume, mass, etc., can be considered to be measures
because they are additive and nonnegative. In R

n, the Lebesgue measure1

of a Cartesian product of real intervals Œa1; b1� � � � � � Œan; bn� is its volume
.b1 � a1/.b2 � a2/ � � � .bn � an/.

(iii) Let x0 2 X. The Dirac measure centered at x0 is defined by

ıx0.A/ D
(
1; if x0 2 A

0; otherwise.

Þ

2.3 Capacities

Definition 2.5 A capacity 	 W 2X ! R is a grounded monotone set function; i.e.,
	.¿/ D 0 and 	.A/ 6 	.B/ whenever A � B.

Note that the constant function 0 is a capacity. Also, a capacity is a monotone game,
and takes only nonnegative values. A capacity is normalized if in addition 	.X/ D
1. Note that an additive normalized capacity is a probability measure. The set of

1Henri-Léon Lebesgue (Beauvais, 1875 – Paris, 1941), French mathematician, famous for his
major contributions to measure and integration theory.
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capacities on X is denoted by MG.X/, while MG0.X/ denotes the set of normalized
capacities.

The term “capacity” was coined by Choquet [53]. The same notion was proposed
independently by Sugeno [319] under the name fuzzy measure. Other terms are also
employed, like nonadditive measure (Denneberg [80]), or monotonic measures.

2.4 Interpretation and Usage

Set functions, and more particularly games and capacities, are used in many different
fields, with different interpretations and aims. We review the most prominent ones
in this section.

2.4.1 In Decision and Game Theory

The fields of decision theory and game theory seem to be the privileged area for
the application of games and capacities. There are two main interpretations and
usage of them here. The first one is to consider capacities/games as a means to
represent the importance/power/worth of a group. Let X represent a set of persons,
usually called players, agents, voters, experts, decision makers, etc., depending on
the situation that is described and the area of decision making that is concerned:
game theory (players, agents), social choice (voters), multi-person decision making
(experts, decision makers). Consider a group A � X of individuals, usually called a
coalition—especially in game theory and social choice—because it is supposed that
the individuals in A cooperate in some sense to achieve some common goal. One
can quantify to which extent the group A is able to achieve or has achieved its goal,
a quantity which is denoted by 	.A/. This interpretation of capacities and games is
the core of the theory of cooperative games, and it is also the basic ingredient of
Chap. 6.

We now give some examples to illustrate various situations.

Example 2.6 Let X be a set of firms. Certain firms may form a coalition in order
to control the market for a given product. Then 	.A/ may be taken as the annual
benefit of the coalition A. Þ

Example 2.7 Let X be a set of voters in charge of electing a candidate for some
important position (president, director, etc.) or voting a bill by a yes/no decision.
Before the election, groups of voters may agree to vote for the same candidate (or for
yes or no). In many cases (presidential elections, parliament, etc.), these coalitions
correspond to the political parties or to alliances among them. If the result of the
election is in accordance with the wish of coalition A, the coalition is said to be
winning, and we set 	.A/ D 1, otherwise it is loosing and 	.A/ D 0. Þ
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Example 2.8 Let X be a set of workers in a factory, producing some goods. The aim
is to produce these goods as much as possible in a given time (say, in 1 day). Then
	.A/ is the number of goods produced by the group A in a given time period. Since
the production needs in general the collaboration of several workers with different
skills, it is likely that 	.A/ D 0 if A is a singleton or a too small group. Þ

The above interpretation extends to more abstract objects and other interpretations
for 	, like monetary value, selling price, etc., as shown by the next example.

Example 2.9 Let X be a set of goods sold in a shop. Then 	.A/ is the selling
price of the set of goods A. In most cases, the selling price is a measure, that
is, the price of a set is the sum of the prices of its elements. However, there are
situations where the price is not additive. For example, it is common practice to
reduce prices when many identical objects are bought together (e.g., 3 for the price
of 2). In these cases, the price is a subadditive function (see Definition 2.18). On the
other hand, it could be superadditive if the considered objects are rare or precious.
For example, the complete collection of the original edition of the Encyclopedia of
Diderot and D’Alembert is much more expensive that the sum of the prices of all
single volumes. Þ
The readers can check that in all these examples, the function 	 satisfies 	.¿/ D 0

and monotonicity. However, the latter property may be violated if the collaboration
is not beneficial. In Example 2.6, it may be the case that if the coalition A contains a
firm i that is close to bankruptcy, we have 	.A n i/ > 	.A/. The same phenomenon
may occur in Example 2.8, if the group of workers contains a worker who disturbs
the others. Hence, for the sake of generality, one may abandon monotonicity and
use games (Definition 2.1) instead of capacities.

The second interpretation concerns the representation of uncertainty. In an
abstract way, X is the set of possible outcomes of some experiment, and it is
supposed that X is exhaustive (i.e., any experiment produces an outcome that
belongs to X), and that each experiment produces a single outcome. Any subset A
of X is called an event, and 	.A/ quantifies the uncertainty that the event A contains
the outcome of an experiment, with the following convention: 	.A/ D 0 indicates
total uncertainty, and 	.A/ D 1 indicates that there is no uncertainty. We use here
the word “uncertainty” as a neutral word, which does not preclude any specific
interpretation or precise meaning of the type of “non-certainty” of some event, the
language having a very rich palette of words to designate the fact that some event
may not occur. This framework is exactly the same as the one used for probability
theory, and therefore	 can be taken as a probability measure. The use of capacities
however allows more flexibility in the representation of uncertainty, and the use of
some specific subfamilies of capacities permits to distinguish among the different
nuances of the language. This is studied in detail in Chaps. 5 and 7.

Another way of considering the second interpretation, which does not refer to
experiments, is to say that X is the set of possible answers to a question. Here also,
it is assumed that only one answer is correct and that X contains that correct answer.
Then 	.A/ quantifies the uncertainty that A contains the correct answer.
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Whatever the type of uncertainty that is represented, it is a reasonable assumption
to say that if an event A is included in B, it is more likely to find the outcome of the
experiment in B than in A. Therefore, the inequality 	.A/ 6 	.B/ makes sense and
justifies the use of capacities in this context. We give some examples.

Example 2.10 David throws a dice, and wonders which number will show. Here
X D f1; 2; 3; 4; 5; 6g, and 	.f1; 3; 5g/ quantifies the uncertainty of obtaining an odd
number. Þ

Example 2.11 A murder was committed. After some investigation, it is found that
the guilty is either Alice, Bob or Charles. Then X D fAlice, Bob, Charlesg, and
	.fBob, Charlesg/ quantifies the degree to which it is “certain” (the precise meaning
of this word being conditional on the type of capacity used) that the guilty is Bob or
Charles. Þ
Example 2.12 Glenn is an amateur of antique Chinese porcelain. He enters a shop
and sees a magnificent vase, wondering how old (and how expensive) this vase could
be. Then X is the set of numbers from, say �3000 to 2012; i.e., the possible date
expressed in years A.C. when the vase was created. For example, 	.Œ1368; 1644�/
indicates to what degree it is certain that it is a vase of the Ming period. Þ

Example 2.13 Leonard is planning to go to the countryside tomorrow for a picnic.
He wonders if the weather will be favorable or not. Here X is the set of possible
states of the weather, like “sunny,” “rainy,” “cloudy,” and so on. For example,
	.fsunny, cloudyg/ indicates to what degree of certainty it will not rain, and
therefore if the picnic is conceivable or not. Þ

Except in Example 2.10, the experiment referred to is not salient in the above
examples, although it is always underlying. The experiment consists in repeating
the same situation and to see what happens. For example, Glenn gould enter another
shop and see another vase, and so on. However, on those examples, it is more natural
to interpret X as the set of possible answers to a given question. Who has committed
the murder? What is the age of this vase? What will be the weather tomorrow? In
all cases, there is a unique (and unknown) true answer, and this answer lies in X.

2.4.2 In Operations Research

Operations Research is another vast field where set functions are applied. They are
often viewed as “pseudo-Boolean functions;” i.e., real-valued functions on f0; 1gn

(Sect. 2.16). They have numerous applications (see the monograph of Crama and
Hammer [63, Ch. 13]), e.g., in graph theory, computer sciences, data mining,
production management, etc.

We mention also the following more specific fields, where games and capacities
are hidden under different names.
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Combinatorial Optimization

Set functions appear in combinatorial optimization. More specifically, submodular
capacities are considered (Definition 2.18), under the name of the rank function of
a polymatroid (Edmonds [122]), a polymatroid being simply a pair .X; 	/, where 	
is a submodular capacity, that is, satisfying the inequality

	.A [ B/C 	.A \ B/ 6 	.A/C 	.B/:

This name comes from the generalization of the following notions. A matroid on X
is a family M � 2X containing the empty set, and satisfying (1) A 2 M and B � A
imply B 2 M, and (2) the property:

A;B 2 M; jAj < jBj ) 9x 2 B n A;A [ fxg 2 M:

Matroids are an abstraction of the notion of sets of independent vectors in a vector
space, as it can be checked from the properties. Maximal sets in M are called bases
of the matroid, and correspond to the usual notion of basis of a vector space. Now,
the rank function of a matroid is a function � W 2X ! N defined by

�.A/ D maxfjBj W B � A;B 2 Mg .A 2 2X/:

Then it is easy to see that � is a submodular capacity on X. There are many useful
examples of matroids, apart from those induced by matrices: the family of sets of
edges without cycle in a graph, those arising from bipartite graphs and matching
problems, etc. We refer the readers to the monograph of Fujishige [149] for full
detail.

Reliability

Set functions model the structure of a multicomponent system and permit to study
its lifetime. Consider a n-component system, whose state (0 or 1, depending whether
the system is functioning or not) is ruled by a Boolean function  W f0; 1gn ! f0; 1g
whose variables are the states of the n components. It is often assumed that the
system is semicoherent, which means that  is nondecreasing in each place, and
satisfies .0; : : : ; 0/ D 0 and .1; : : : ; 1/ D 1. Then  is a 0-1-valued capacity,
a.k.a. simple game (Sect. 2.8.1).

Denoting by X1; : : : ;Xn the random variables giving the lifetime of each compo-
nent, the Barlow-Proschan index of component k is the probability that the failure
of the system is provoked by the failure of component k: IBP

k D Pr.T D Xk/, where
T is the lifetime of the system. As remarked by Marichal and Mathonet [233], when
X1; : : : ;Xn are continuous and i.i.d. random variables, the Barlow-Proschan index is
nothing but the Shapley value of  (Remark 2.43).
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Another quantity of interest is the signature s 2 Œ0; 1�N of the system, where
sk D Pr.T D X.k//, the probability that the kth component failure provokes the
failure of the system (X.k/ denotes the kth smallest lifetime). When the lifetimes are
continuous and i.i.d., the signature depends solely on :

sk D
X

A�Œn�
jAjDn�kC1

1
� n

jAj
�.A/�

X

A�Œn�
jAjDn�k

1
� n

jAj
�.A/ .k 2 Œn�/:

Moreover, what is known in reliability theory as the reliability function of the
system corresponds to the Owen extension of  (Sect. 2.16.4).

2.5 Derivative of a Set Function

By analogy with real-valued functions, the derivative of a set function is its variation
when an element is added or removed from a set.

Definition 2.14 Let 
 be a set function on X, and consider A � X, i 2 X. The
derivative of 
 at A w.r.t. i is defined by

�i
.A/ D 
.A [ fig/� 
.A n fig/:

Note that �i
.A [ fig/ D �i
.A n fig/ for all A � X (the presence of i in A is
irrelevant for�i
.A/), and that �i
 W 2X ! R is itself a set function 8x 2 X.

As it will become evident, the derivative of a set function possesses many
properties close to derivatives of usual real-valued functions. It is very useful in
cooperative game theory, where it is used to define the marginal vectors [see (3.8)].
An interpretation directly in terms of the usual derivative of a function will be given
in Sect. 2.16, Definition 2.67.

As a first illustration, let us remark that a set function is monotone if and only if
its derivative w.r.t. any element is nonnegative everywhere: �i
.A/ > 0 for every
i 2 X, A � X.

Higher order derivatives can be defined as well. Consider distinct i; j 2 X and
A � X, and observe that because�i
, �j
 are itself set functions, one can take their
derivatives and obtains:

�i.�j
.A// D 
.A[fi; jg/�
.A[fignf jg/�
.A[f jgnfig/C
.Anfi; jg/ D �j.�i
.A//:

The (2nd order) derivative of 
 at A w.r.t. to i; j is defined by

�ij
.A/ D �i.�j
.A// D �j.�i
.A//:



2.6 Monotone Cover of a Game 33

Continuing the process, one can take derivatives with respect to any number of
elements of X, in short, we can consider the derivative with respect to a set K � X.

Definition 2.15 Consider subsets A;K � X and a set function 
 on X. The
derivative of 
 at A w.r.t. K is defined inductively by

�K
.A/ D �Knfig.�fig
.A//;

with the convention�¿
 D 
, and�fig
 D �i
.

Obviously �fi;jg
 D �ij
. Note that �K
 is a set function. When K \ A D ¿, it is

easy to obtain that �K
.A/ D
X

L�K

.�1/jKnLj
.A [ L/. More generally, if K and A

intersect, we find

�K
.A/ D
X

L�K

.�1/jKnLj
..A n K/ [ L//: (2.2)

The next theorem expresses the derivative of the conjugate of a game.

Theorem 2.16 For any game v on X, any set K � X

�Kv.A/ D �Kv.A
c/ .A � X/:

Proof We show it by induction on jKj. For K D i 2 X, we find �iv.A/ D �v..A [
fig/c/Cv..A n i/c/ D �v.Ac n fig/Cv.Ac [ fig/ D �iv.Ac/. Assuming the formula
holds for K and taking i 2 Kc, we find:

�K[iv.A/ D �i.�Kv.A// D �i.�Kv.A
c// D �K[iv.A

c/:

ut

2.6 Monotone Cover of a Game

Let v be a game on X. The monotone cover of v is the smallest monotone game
(capacity) 	 such that 	 > v. We denote it by mc.v/. It is given by

mc.v/.A/ D max
B�A

v.B/ .A � X/: (2.3)

It follows that mc, seen as a mapping on the lattice .G.X/;6/, where 6 is the usual
ordering of functions, is a closure operator (see Sect. 1.3.2). The set of closed games
(that is, the fixed points of mc) is exactly the set of capacities, which forms therefore
also a lattice.

The following result is easy to obtain (we leave the proof to the readers).
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Theorem 2.17 Let v be a f0; 1g-valued game (i.e., whose range is f0; 1g). Then

mc.v/.A/ D 1 if and only if A 2"B0

where B0 is the set of minimal subsets of B D fB W v.B/ D 1g.

We recall that "B0 is the upset generated by B0 (Sect. 1.3.2).

2.7 Properties

We give the main properties of capacities and games.

Definition 2.18 Let v be a game on X. We say that v is

(i) superadditive if for any A;B 2 2X , A \ B D ¿,

v.A [ B/ > v.A/C v.B/:

The game is said to be subadditive if the reverse inequality holds;
(ii) supermodular if for any A;B 2 2X ,

v.A [ B/C v.A \ B/ > v.A/C v.B/:

The game is said to be submodular if the reverse inequality holds. A game that
is both supermodular and submodular is said to be modular. Supermodular
games are often improperly called convex games, while submodular games are
called concave (see Remark 2.24);

(iii) k-monotone (for a fixed integer k > 2) if for any family of k sets A1; : : : ;Ak 2
2X ,

v
� k[

iD1
Ai

�
>

X

I�f1;:::;kg
I¤¿

.�1/jIjC1v
�\

i2I

Ai

�
:

v is totally monotone (or 1-monotone) if it is k-monotone for any k > 2;
(iv) k-alternating (for a fixed integer k > 2) if for any family of k sets A1; : : : ;Ak 2

2X ,

v
� k\

iD1
Ai

�
6

X

I�f1;:::;kg
I¤¿

.�1/jIjC1v
�[

i2I

Ai

�
:

v is totally alternating (or 1-alternating) if it is k-alternating for any k > 2;
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(v) maxitive if for any A;B 2 2X ,

v.A [ B/ D v.A/ _ v.B/I

(vi) minitive if for any A;B 2 2X,

v.A \ B/ D v.A/ ^ v.B/:

Remark 2.19

(i) All of the above properties can be applied to set functions as well.
(ii) Super(sub)modularity implies super(sub)additivity but not the converse. Also,

it is easy to check that additivity and modularity are equivalent properties.
This is no longer true when games are defined on subcollections of 2X (see
Sect. 2.19.2).

(iii) 2-monotonicity corresponds to supermodularity, while the 2-alternating prop-
erty corresponds to submodularity.

(iv) If 2 6 k0 6 k, then k-monotonicity implies k0-monotonicity.
(v) k-monotonicity and the k-alternating properties generalize the following equal-

ity, valid for any measure:

m
� k[

iD1
Ai

�
D

X

I�f1;:::;kg
I¤¿

.�1/jIjC1m
�\

i2I

Ai

�
:

This equality comes directly from the well-known identity

ˇ
ˇ
ˇ

k[

iD1
Ai

ˇ
ˇ
ˇ D

X

I�f1;:::;kg
I¤¿

.�1/jIjC1
ˇ
ˇ
ˇ
\

i2I

Ai

ˇ
ˇ
ˇ: (2.4)

The above equality for measures is related to the well-known sieve formula
or principle of inclusion-exclusion (see, e.g., Berge [20, Chap. 3, Sect. 3] and
Aigner [2, Chap. IV, Sect. 2.B]): Let A1; : : : ;Ak � X. The measure of the set of
elements of X that belong to exactly p of the sets Ai is

Tp
k D

kX

`Dp

.�1/`�p

 
`

p

!
X

K�f1;:::;kg;jKjD`
m.K/;

with m.K/ D m
�\

i2K

Ai

�
if K ¤ ¿, and m.¿/ D m.X/.
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(vi) k-monotonicity and the k-alternating properties were introduced by Choquet
[53, Chap. 3], although the original definitions slightly differ. Choquet intro-
duced difference functions of a set function 
 as follows. For any k 2 N0 and
A;B1; : : : ;Bk 2 2X , define recursively

rk
.A;B1; : : : ;Bk/ D rk�1
.A;B1; : : : ;Bk�1/� rk�1
.A \ Bk;B1; : : : ;Bk�1/;

and r0
.A/ D 
.A/, A 2 2X. This yields

rk
.A;B1; : : : ;Bk/ D
X

I�Œk�
.�1/jIj
.A \

\

i2I

Bi/: (2.5)

Then 
 is said to be k-monotone in the sense of Choquet if rk
.A;B1; : : : ;
Bk/ > 0 for every family A;B1; : : : ;Bk 2 2X. Observe that 1-monotonicity
is nothing but monotonicity (take A � B). In order to get the definition of
k-alternating set function, replace in the above \ by [ and > by 6.

The exact relation between the two definitions is simply the following,
for a fixed k > 2: 
 is k-monotone in the sense of Choquet if and only if

 is k-monotone and monotone. Some authors, as Chateauneuf and Jaffray
[50], and Barthélemy [18], use the name weak k-monotonicity instead of our
terminology (and similarly for the k-alternating property), but it seems that our
terminology follows the current usage. See also Sect. 7.2.3 for a more general
presentation and other properties.

}
The next theorem gathers some elementary properties.

Theorem 2.20 Let v be a game on X. The following holds.

(i) v superadditive ) v > v;
(ii) Let k > 2. v is k-monotone (respectively, k-alternating) if and only if v

is k-alternating (respectively, k-monotone). In particular, v is supermodular
(respectively, submodular) if and only if v is submodular (respectively, super-
modular);

(iii) v > 0 and supermodular implies that v is monotone;
(iv) v maxitive or minitive ) v monotone;
(v) v is maxitive , v is minitive.

Proof

(i) Suppose v is superadditive. Then for any A 2 2X , v.A/ D v.X/ � v.Ac/ >
v.A/C v.Ac/ � v.Ac/, hence the result.
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(ii) For any A1; : : : ;Ak 2 2X ,

v
� k[

iD1
Ai

�
>

X

I�f1;:::;kg
I¤¿

.�1/jIjC1v
�\

i2I

Ai

�
,

v.X/� v
�� k[

iD1
Ai

�c�
>

X

I�f1;:::;kg
I¤¿

.�1/jIjC1
 

v.X/� v
��\

i2I

Ai

�c�
!

,

v
� k\

iD1
Ac

i

�
6

X

I�f1;:::;kg
I¤¿

.�1/jIjC1v
�[

i2I

Ac
i

�
:

The result for k-alternating games holds by v D v.
(iii) Take A � B � X, and apply supermodularity to A;B n A. We find v.B/ >

v.A/C v.B n A/ > v.A/ by nonnegativity of v.
(iv) Suppose A � B. Then, supposing v maxitive, v.B/ D v.A[B/ D v.A/_v.B/,

which implies v.A/ 6 v.B/ (similar if v is minitive).
(v) Suppose v is maxitive. Then

v.A \ B/ D v.X/ � v.Ac [ Bc/ D v.X/ � .v.Ac/ _ v.Bc//

D .v.X/� v.Ac/ ^ .v.X/� v.Bc/ D v.A/ ^ v.B/:

The reverse implication can be obtained similarly.
ut

An important question is how to test k-monotonicity and total monotonicity. A
direct application of the definitions seems to be computationally intractable. The
following theorem ensures a test of minimal size.

Theorem 2.21 Let v be a game on X. The following holds.

(i) v is k-monotone for some k > 2 if and only if for every disjoint S;K � X with
2 6 jKj 6 k,

�Kv.S/ D
X

T�K

.�1/jKnTjv.S [ T/ > 0I

(ii) v is totally monotone if and only if v is .2n � 2/-monotone, with jXj D n.

Proof

(i) ()) Consider the family fS[ .K nfxg/gx2K, with jKj D k0, 2 6 k0 6 k. Since k-
monotonicity implies k0-monotonicity, applying k0-monotonicity to this family
yields�Kv.S/ > 0.



38 2 Set Functions, Capacities and Games

(() Let A1; : : : ;Ak be a family of distinct sets in 2X , and put Œk� D
f1; : : : ; kg. First, assume that some set in the family, say A1, is included into
another one. Define K D fi 2 f2; : : : ; kg W A1 � Aig ¤ ¿. We show that in
this case the test of k-monotonicity reduces to the test of .k � 1/-monotonicity
on the family A2; : : : ;Ak. Indeed, clearly

Sk
iD1 Ai D Sk

iD2 Ai. Moreover,

X

I�Œk�
I¤¿

.�1/jIjC1v
�\

i2I

Ai

�
D
X

I�Œk�
I 631

I¤¿

.�1/jIjC1v
�\

i2I

Ai

�
C
X

I�Œk�
I31

.�1/jIjC1v
�\

i2I

Ai

�
:

We show that the 2nd term in the right-hand side is 0, which proves the desired
result.

X

I�Œk�
I31

.�1/jIjC1v
�\

i2I

Ai

�
D
X

I�Œk�
I31

.�1/jIjC1v
�

A1 \
\

i2InK

Ai

�

D
X

J�Œk�n.K[1/
v
�

A1 \
\

i2J

Ai

�X

L�K

.�1/jJjCjLjC2

„ ƒ‚ …
D0 by (1.1)

D 0:

Therefore, we can assume that no set is included into another one. Observe then

that the family can be rewritten in the form S [ K1; : : : ; S [ Kk, with S D
k\

iD1
Ai,

with all Ki being distinct and nonempty and forming an antichain. The test of
k-monotonicity reads

v.S [
[

i2Œk�
Ki/�

X

I�Œk�
I¤¿

.�1/jIjC1v
�

S [
\

i2I

Ki

�
> 0; (2.6)

which we denote for convenience by D.vI S [ K1; : : : ; S [ Kk/ > 0. We prove

k-monotonicity by induction on
ˇ
ˇ
ˇ

k[

iD1
Ai n

k\

iD1
Ai

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ

k[

iD1
Ki

ˇ
ˇ
ˇ. Since the K0

i s are

distinct, nonempty and form an antichain, we have j [k
iD1 Kij > k. Let us prove

(2.6) when j [k
iD1 Kij D k. We can put w.l.o.g. Ki D fig for i D 1; : : : ; k, hence

(2.6) reduces to (with a slight abuse of notation)

v.S [ Œk�/ �
X

i2Œk�
v.S [ fig/�

X

I�Œk�
jIj>2

.�1/jIjC1v.S/

„ ƒ‚ …
.�kC1/v.S/

> 0: (2.7)
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Now,�Kv.S/ > 0 for every K � Œk�, jKj > 2, yields

X

K�Œk�
jKj>2

X

T�K

.�1/jKnTjv.S [ T/ > 0:

Rearranging and using (1.1) in Lemma 1.1, we find

X

K�Œk�
jKj>2

X

T�K

.�1/jKnTjv.S [ T/

D
X

K�Œk�

X

T�K

.�1/jKnTjv.S [ T/ � k.�1/v.S/�
X

i2Œk�
v.S [ i/ � v.S/

D
X

T�Œk�
v.S [ T/

X

K2ŒT;Œk��
.�1/jKnTj C .k � 1/v.S/�

X

i2Œk�
v.S [ i/

D v.S [ Œk�/C .k � 1/v.S/�
X

i2Œk�
v.S [ i/ > 0:

Hence (2.7) holds.
Assume (2.6) holds, and let us prove it still holds with the family S [ K1 [

fxg; S [ K2; : : : ; S [ Kk, with x 62 K1 [ K2 [ � � � [ Kk. The k-monotonicity test
becomes

D.vI S [ K1 [ fxg; S [ K2; : : : ; S [ Kk/

D v.S [
[

i2Œk�
Ki [ fxg/� v.S [ K1 [ fxg/�

X

i2Œk�nf1g
v.S [ Ki/

�
X

I�Œk�
jIj>2

.�1/jIjC1v
�

S [
\

i2I

Ki

�

D D.vI S [ K1; : : : ; S [ Kk/C v.S [
[

i2Œk�
Ki [ fxg/� v.S [ K1 [ fxg/

�v.S [
[

i2Œk�
Ki/C v.S [ K1/

D D.vI S [ K1; : : : ; S [ Kk/C D.vI S0 [ fxg; S0 [ K0/

with S0 D S [ K1 and K0 D K2 [ K3 [ � � � [ Kk. By induction hypothesis,
both terms in the right-hand side are nonnegative, hence D.vI S [ K1 [ fxg; S [
K2; : : : ; S [ Kk/ > 0.
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(ii) It is enough to prove that .2n � 2/-monotonicity implies .2n � 1/- and 2n-
monotonicity.

Let us prove .2n � 1/-monotonicity. Consider a family A1; : : : ;A2n�1 of
subsets of X. If some subsets are equal, then .2n � 2/-monotonicity applies and
the required inequality is satisfied. If all subsets are different, then necessarily
either ¿ or X occurs in the family. Suppose A1 D ¿. Then we have

v
� 2n�1[

iD1
Ai

�
D v

� 2n�1[

iD2
Ai

�
>

X

I�f2;:::;2n�1g
I¤¿

.�1/jIjC1v
�\

i2I

Ai

�

D
X

I�f1;:::;2n�1g
I¤¿

.�1/jIjC1v
�\

i2I

Ai

�
;

applying .2n � 2/-monotonicity and the fact that
T

i2I Ai D ¿ if I 3 1. Now,
suppose A1 D X. Set K D f1; : : : ; 2n � 1g, and K0 D fI � K; I 3 1g, K00 D
fI � K; I 63 1; I ¤ ¿g. Observe that the mapping I 7! Inf1g realizes a bijection
between K0 n f1g and K00. Moreover, for any I 2 K0,

.�1/jIjC1v
�\

i2I

Ai

�
D .�1/jInf1gjC2v

� \

i2Inf1g
Ai

�
:

Hence

X

I�K
I¤¿

.�1/jIjC1v
�\

i2I

Ai

�
D
X

I2K0

.�1/jIjC1v
�\

i2I

Ai

�
C
X

I2K00

.�1/jIjC1v
�\

i2I

Ai

�

D v.X/ D v
� 2n�1[

iD1
Ai

�
:

We prove now 2n-monotonicity. We consider a family of 2n subsets of X.
If two or more subsets are equal, the desired equality holds by .2n � 1/-
monotonicity. If all subsets differ, then X belongs to the family, and the
preceding argument can be applied.

ut
Assertion (i) will be expressed more simply through the Möbius transform
(Theorem 2.33).
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Remark 2.22

(i) The proof of (i) is rather technical and we are not aware of a simpler
proof, although the result is simple to show for 2-monotonicity or for total
monotonicity (for the latter result, see, e.g., Crama et al. [64]). Another version
of (i) expressed via the Möbius transform [Theorem 2.33(iii)] was proved by
Chateauneuf and Jaffray [49]. A stronger result (in the sense that an equivalent
condition is given for the derivatives w.r.t. K to be positive for every K of a
given size) was shown by Foldes and Hammer [144].

(ii) Result (ii) was established by Barthélemy [18].

}
Applying (i) for k D 2 gives a very simple test for supermodularity (condition (i)

in the next corollary).

Corollary 2.23 Let v be a game on X. The following holds.

(i) v is supermodular if and only if for any A � X, i; j 62 A, i ¤ j, we have

�ijv.A/ D v.A [ fi; jg/� v.A [ fig/� v.A [ f jg/C v.A/ > 0I (2.8)

(ii) v is supermodular if and only if for every A � B � X, for every i 2 X n B, we
have

�iv.A/ 6 �iv.B/: (2.9)

Proof (ii) Clearly, the condition is necessary. Suppose it holds with B D A [ f jg.
Then (ii) reduces to (i), which proves supermodularity. ut
Remark 2.24 Condition (ii) is often used in cooperative game theory, where it is
often taken as the definition of a convex game. This name is justified by analogy
with convex real functions. Indeed, condition (ii) says that the higher the argument
of the function, the higher the derivative. For set functions defined on 2X with
X finite, the corollary shows that the notions of convexity and supermodularity
coincide. But this is not true in general, for instance, if X D N (see Example 2.109
and Theorem 2.110), or if the domain is a subfamily of 2N (see Theorem 2.114
for a generalization, and Example 2.115 for a counterexample). Hence, we should
make a distinction between these two concepts, although it is common, especially
in decision theory, to use the term “convex” for supermodular functions.2 In
combinatorial optimization, and generally in discrete mathematics, only the term
“supermodular” is used. }

2It seems that this term was introduced by Shapley [301].
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2.8 Main Families of Capacities

We present the best known families of capacities. Most of them play an important
rôle in this monograph.

2.8.1 0-1-Capacities

A 0-1-capacity is a capacity valued on f0; 1g. Apart from the null capacity 0, all 0-
1-capacities are normalized. In game theory, 0-1-capacities are called simple games.
They correspond exactly to the situation depicted in Example 2.7 (voting games).

There are two remarkable normalized 0-1-capacities, the smallest one 	min and
the greatest one 	max, given by

	min.A/ D 0 for all A � X; 	max.A/ D 1 for all ¿ ¤ A � X:

A 0-1-capacity	 is uniquely determined by the antichain of its minimal winning
coalitions. A set A is a winning coalition for 	 if 	.A/ D 1. It is minimal winning
if in addition 	.B/ D 0 for all B � A. Note that two minimal winning coalitions
are incomparable for inclusion, hence the collection of minimal winning coalition
is an antichain in 2X . For example, the antichains giving rise to 	min and 	max are
respectively fXg and ffig W i 2 Xg.

The number of antichains in 2X with jXj D n, or equivalently, the number of
monotonic Boolean functions of n variables is the Dedekind3 number M.n/ [75].
There is no known closed-form formula for an exact computation of these numbers.
Up to now, only the nine first numbers are known. By the fact that a 0-1-capacity
must satisfy 	.¿/ D 0, one antichain is eliminated, namely, the antichain f¿g,
giving rise to the constant set function 1. Thus, the number of 0-1-capacities on X is
M.jXj/� 1 (Table 2.1).

2.8.2 Unanimity Games

Let A � X, A ¤ ¿. The unanimity game centered on A is the game uA defined by

uA.B/ D
(
1; if B � A

0; otherwise:

3Richard Dedekind (Braunschweig, 1831 – Braunschweig, 1916) is a German mathematician. He
brought important contributions in abstract algebra, algebraic number theory and the foundations
of the real numbers.
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n M(n)

0 2

1 3

2 6

3 20

4 168

5 7581

6 7828354

7 2414682040998

8 56130437228687557907788

Table 2.1 The Dedekind numbers
M.n/ for 0 6 n 6 8

Note that unanimity games are 0-1-valued capacities. Dirac measures (see
Example 2.4) are unanimity games (exactly the additive unanimity games) (why?).

We will see in Sect. 2.15 that unanimity games play a central rôle. They are also
called simple support functions by Shafer [296, p. 75].

2.8.3 Possibility and Necessity Measures

A possibility measure on X is a normalized capacity … on X that is maxitive;
i.e., satisfying ….A [ B/ D max.….A/;….B// for all A;B 2 2X. A necessity
measure is a normalized capacity Nec that is minitive; i.e., satisfying Nec.A \
B/ D min.Nec.A/;Nec.B//. The conjugate of a possibility measure (respectively,
a necessity measure) is a necessity measure (respectively, a possibility measure).
Note that … is entirely determined by its value on singletons: ….A/ D

_

x2A

….fxg/
for any A in 2X , like a probability measure. The function � W X ! Œ0; 1� defined
by �.x/ D ….fxg/ is called a possibility distribution. Since ….X/ D 1, we have
maxx2X �.x/ D 1.

Note that unanimity games are necessity measures (why?).
The concept of possibility measure was proposed initially by Zadeh [357]. Later

Dubois and Prade enriched the concept by adding the dual notion of necessity
measure, and developed a whole theory of representation of uncertainty [106].
Possibility measures are, however, not restricted to this usage, and arise naturally
in many contexts, even in more physical ones where it is generally thought that
classical additive measures are suitable. Consider, e.g., the transportation of tree
trunks by a truck. Additive measures are suitable to measure the total weight of
the tree trunks, and one can check if the total weight does not exceed the limit.
Now, consider the length of each trunk. Clearly, the length of the bunch of trunks is
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determined by the length of the longest trunk, which should be within some limits.
In the latter case, a maxitive measure is suitable.

Possibility and necessity measures are studied in Chap. 7.

2.8.4 Belief and Plausibility Measures

A belief measure is a totally monotone normalized capacity, usually denoted by Bel.
This is the usual definition, although it is enough to define a belief measure as

a nonnegative normalized and totally monotone game, owing to Theorem 2.20(iii).
We denote the set of belief measures on X by B.X/.

A plausibility measure is a totally alternating normalized capacity, usually
denoted by Pl. By Theorem 2.20(ii), the conjugate of a belief measure is a plausibil-
ity measure, and vice versa. Possibility and necessity measures are particular cases
of belief and plausibility measures, as will be shown in Sect. 2.10.2. Belief measures
were introduced by Shafer [296], rephrasing and developing ideas of Dempster [77],
and forming what he called evidence theory (see also Chap. 7).

2.8.5 Decomposable Measures

They generalize the idea that measures can be defined by distributions, like
probability and possibility measures, by means of some operator playing the rôle
of the addition. This operator is in general a triangular conorm, although other
definitions are possible.

A triangular conorm or t-conorm for short is a function S W Œ0; 1�2 ! Œ0; 1�

satisfying for all x; y; z 2 Œ0; 1�,
(i) associativity: S.x;S.y; z// D S.S.x; y/; z/;

(ii) symmetry: S.x; y/ D S.y; x/;
(iii) nondecreasingness: S.x0; y/ 6 S.x; y/ for all x0 6 x;
(iv) neutral element: S.0; x/ D x.

By associativity, a t-conorm is unambiguously defined for any number of arguments.
If necessary, S for n arguments is denoted by S.n/. Common examples of t-conorms
are the maximum, the probabilistic sum,

SP.x; y/ D 1 � .1 � x/.1 � y/ D x C y � xy

and the Łukasiewicz t-conorm, a.k.a. bounded sum

SL.x; y/ D min.x C y; 1/:

Note that by (iii) and (iv) the smallest t-conorm is the maximum, and that 1 is the
annihilator element; i.e., S.1; x/ D 1 (why?).
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A continuous t-conorm is Archimedean4 if it satisfies S.x; x/ > x for every
x 2 �0; 1Œ. Obviously, the maximum is not Archimedean but the probabilistic and
bounded sums are.

A fundamental fact is that Archimedean continuous t-conorms can be represented
as distorted additions. Specifically, S is continuous and Archimedean if and only if
there exists a continuous and increasing mapping s W Œ0; 1� ! Œ0;1�, with s.0/ D 0

(called the additive generator), such that

S.x; y/ D s�1�min.s.1/; s.x/C s.y//
�

.x; y 2 Œ0; 1�/;

and s is unique up to a multiplicative positive constant. The additive generator of the
probabilistic sum is sP.u/ D � log.1 � u/, while for the bounded sum it is simply
sL.u/ D u, for u 2 Œ0; 1�.

An important distinction arises whether s.1/ is finite or not. If s.1/ D 1, then
the t-conorm is said to be strict, otherwise it is said to be nilpotent. Thus, the
probabilistic sum is strict, and the bounded sum is nilpotent. It turns out that any
strict t-conorm S is isomorphic to the probabilistic sum, in the sense that there exists
a bijection ' W Œ0; 1� ! Œ0; 1� such that '�1.S.'.x/; '.y// D SP.x; y/. Similarly, any
nilpotent t-conorm is isomorphic to the bounded sum. Note that strict t-conorms are
strictly increasing, while nilpotent t-conorms are not.

Remark 2.25 T-conorms were introduced by Schweizer and Sklar [292] for proba-
bilistic metric spaces, and are dual to triangular norms (t-norms), which are binary
operators on Œ0; 1� satisfying associativity, symmetry, nondecreasingness and having
neutral element 1. Both are widely used in many fields, for instance, artificial
intelligence, computer sciences, many-valued logic, etc. For a thorough study and
a proof of the above statements we refer the readers to the monographs of Klement
et al. [210], Schweizer and Sklar [293] and to Grabisch et al. [177, Chap. 3]. }
Definition 2.26 Let S be a t-conorm. A normalized capacity 	 is said to be
decomposable for S or S-decomposable if it satisfies

	.A [ B/ D S.	.A/; 	.B//

for every disjoint A;B � X.

4The Archimedean property can be defined without continuity. It says that for every x; y 2 �0; 1Œ,
there exists n 2 N such that S.n/.x; : : : ; x/ > y, or, equivalently, limn!1 S.n/.x; : : : ; x/ D 1 for
every x 2 �0; 1Œ. Under continuity, it reduces to the above simple definition.

This property is a generalization of the classical Archimedean property of linearly ordered
groups. Given an ordered group G and x; y 2 G, x is said to be infinitesimal w.r.t. y if there is no
integer n such that x C � � � C x

„ ƒ‚ …
n

> y. Then G is said to be Archimedean if there is no pair x; y 2 G

such that x is infinitesimal w.r.t. y.
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Clearly, a probability measure is a SL-decomposable measure, while a possibility
measure is max-decomposable. Note that any function ˛ W X ! Œ0; 1� defines a
S-decomposable measure 	 by putting 	.fxg/ D ˛.x/, provided S.n/.˛.x/ W x 2
X/ D 1, with n D jXj. Then, letting 	.¿/ D 0, nondecreasingness of the t-conorm
ensures that 	 is a normalized capacity. The function ˛ is called the distribution
of 	.

When S is a continuous and Archimedean t-conorm with additive generator s,
decomposable measures may be distortions of (additive) measures. Specifically, for
every A � N, we have

	.A/ D s�1�min.s.1/;
X

x2A

s ı 	.fxg//
�
: (2.10)

Note that the condition 	.X/ D 1 is equivalent to
P

x2X s ı 	.fxg/ > s.1/.
Equation (2.10) shows that s ı 	 can be seen as a measure truncated by s.1/. This
leads to the following classification of decomposable capacities:

(i) S type: S is strict. Then s ı 	 is additive and s ı 	.X/ D s.1/ D 1; i.e., s ı 	
is an infinite measure.

(ii) NSA type: S is nilpotent and
P

x2X s ı 	.fxg/ D s.1/. Then s ı 	 is additive
and s ı 	.X/ D s.1/ < 1; i.e., s ı 	 is a finite measure on Œ0; s.1/�.

(iii) NSP type: S is nilpotent and
P

x2X sı	.fxg/ > s.1/. Then sı	 is not additive,
and therefore not a measure.

SP-decomposable measures are of the S type.
Decomposable measures have been first introduced by Dubois and Prade [101],

and independently by Weber [345]. The classification S, NSA, NSP is due to Weber.

2.8.6 �-Measures

Let � > �1. A normalized capacity 	 is a �-measure if it satisfies

	.A [ B/ D 	.A/C 	.B/C �	.A/	.B/ (2.11)

for every disjoint A;B � X. Any �-measure is a decomposable measure where the
underlying t-conorm is a member of the family of Sugeno-Weber t-conorms, defined
by:

SSW
� .x; y/ D min.1; x C y C �xy/

for � > �1, and SSW1 .x; y/ D max.x; y/ if x or y is 0, and 1 otherwise (called the
drastic t-conorm because it is the greatest one). Note that SSW�1 D SP and SSW

0 D SL.
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It is a family of Archimedean t-conorms, whose additive generator is

sSW
� .u/ D

8
ˆ̂
<

ˆ̂
:

� log.1 � u/; if � D �1
u; if � D 0
log.1C�u/
log.1C�/ ; if � 2 ��1;1Œ n f0g;

and sSW1 .u/ D 1C u for u 2 �0; 1�, and sSW1 .0/ D 0. Therefore, except for � D �1,
all SSW

� are nilpotent. This explains why � D �1 is excluded for �-measures: since
the underlying t-conorm is strict, it would lead to a decomposable measure of the S
type, hence sSW�1 ı 	 would be an infinite measure.

Then, a �-measure 	 is a distorted probability (i.e., sSW
� ı 	 is a probability) if

and only if

X

x2X

log.1C �	.fxg/
log.1C �/

D 1;

which leads to the normalization condition

1C � D
Y

x2X

.1C �	.fxg/: (2.12)

This equation has a unique solution (see, e.g., Wang and Klir [343, Theorem 4.7]),
which is positive if

P
x2X 	.fxg/ < 1, 0 in case of equality, and in the interval

��1; 0Œ when
P

x2X 	.fxg/ > 1.
Formula (2.11) for � ¤ 0 can be extended to an arbitrary number of disjoint sets,

using the additive generator:

	
�[

i2I

Ai

�
D s�1�min.1;

X

i2I

s ı 	.Ai//
�
;

with

s�1.u/ D 1

�

�
.1C �/u � 1

�
; (2.13)

acting as a distortion function. This yields, assuming the normalization condition
(2.12) is fulfilled and � ¤ 0,

	
�[

i2I

Ai

�
D 1

�

�Y

i2I

.1C �	.Ai//� 1
�
:
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From the above formula, one obtains the expression of 	 in terms of its distribution,
for � ¤ 0:

	.A/ D 1

�

�Y

x2A

.1C �	.fxg//� 1
�
; (2.14)

for any A � X. Be careful that this expression is valid only if (2.12) holds.

Theorem 2.27 The conjugate of a �-measure is a �0-measure with �0 D � �
�C1 .

Proof (Wang and Klir [343, Corollary 4.5]) 	 being a �-measure, we have immedi-
ately by (2.11)

	.Ac/ D 1 � 	.A/
1C �	.A/

:

It follows that

	.A/C 	.B/� �

�C 1
	.A/	.B/

D 1 � 	.Ac/C 1 � 	.Bc/ � �

�C 1
.1 � 	.Ac//.1 � 	.Bc//

D .�C 1/	.A/

1C �	.A/
C .�C 1/	.B/

1C �	.B/
� � .�C 1/	.A/	.B/

.1C �	.A//.1C �	.B//

D .�C 1/.	.A/C 	.B/C �	.A/	.B//

.1C �	.A//.1C �	.B//

D .�C 1/	.A [ B/

1C �	.A [ B/
D 1 � 	..A [ B/c/ D 	.A [ B/:

ut
Clearly, a �-measure is superadditive if � > 0, and subadditive otherwise. A
stronger result holds.

Theorem 2.28 A �-measure is a belief measure if and only if � > 0, and is a
plausibility measure otherwise (� 2 ��1; 0�).
(For a proof, see Corollary 2.38.)

Remark 2.29 �-Measures were introduced by Sugeno [319, 320]. Due to their
simplicity, they are often used in applications. }
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2.9 Summary

In Sects. 2.7 and 2.8, we have seen that many notions are related to each other. The
diagram on Fig. 2.1 provides a clear view of most notions encountered so far. It is
valid in the finite case and gives a classification of various families of normalized
capacities.

2.10 The Möbius Transform

Definition 2.30 Let 
 be a set function on X. The Möbius transform or Möbius
inverse of 
 is a set function m
 on X defined by

m
.A/ D
X

B�A

.�1/jAnBj
.B/ (2.15)

for every A � X.

Note that m
.¿/ D 
.¿/. Given m
 , it is possible to recover 
 by the formula


.A/ D
X

B�A

m
 .B/ .A � X/: (2.16)

Indeed, we have, using (1.1):
X

B�A

m
.B/ D
X

B�A

X

C�B

.�1/jBnCj
.C/ D
X

C�A


.C/
X

B2ŒC;A�
.�1/jBnCj D 
.A/:

The following is a useful technical lemma.

Lemma 2.31 For any set function 
 on X, any disjoint sets K;A � X, we have

�K
.A/ D
X

L2ŒK;A[K�

m
.L/:

In particular, m
.A/ D �A
.¿/, which is (2.15).

Proof We show it by induction on jAj. As remarked, the lemma holds with jAj D 0.
Suppose it holds till jAj D a for some a > 0 and let us prove it still holds for A[fig,
with i 2 X n A. We have

X

L2ŒK;A[K[fig�
m
.L/ D

X

L2ŒK;A[K�

m
 .L/C
X

L2ŒK[fig;A[K[fig�
m
.L/

D
X

L�K

.�1/jKnLj
.A [ L/C
X

L�K[fig
.�1/jK[fignLj
.A [ L/
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normalized capacities

superadditive

2-monotone (or convex, supermodular)

3-monotone

∞-monotone (or belief measures)

necessity
unanimity games

Dirac measures

λ > 0

−1 < λ < 0

subadditive

2-alternating (or concave, submodular)

3-alternating

∞-alternating (or plausibility measures)

possibility

λ-measure

probability (λ = 0)

Fig. 2.1 Various families of normalized capacities on a finite set. All families are rectangular,
except �-measures. All capacities in the left upper corner are conjugate of those placed symmet-
rically in the right lower corner, except super/subadditive capacities. Probability measures are
self-conjugate, therefore the two squares of Dirac measures coincide in reality

D
X

L�K

.�1/jKnLj
.A [ L/ �
X

L�K[fig
L63i

.�1/jKnLj
.A [ L/

C
X

L�K[fig
L3i

.�1/jK[fignLj
.A [ L/

D
X

L0�K

.�1/jKnL0j
.A [ fig [ L0/ D �K
.A [ fig/:

ut
Remark 2.32

(i) The Möbius transform is a widely used concept in combinatorics, capacity
theory, nonadditive models of decision, and cooperative game theory. In the
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latter domain, the Möbius transform mv of a game v is known under the name
of Harsanyi dividends [193]. It has been rediscovered many times, and this
notion arises naturally in many places of this monograph, because it occupies
a central position.

(ii) The origin of the Möbius transform goes back to the German mathematician
Möbius.5 Later, Rota gave a general theory of Möbius functions [277] on
partially ordered sets. We give below a flavor of it. A thorough treatment can
be found in Aigner [2, Chap. 4], see also Berge [20, Sect. 3.2].

Let f ; g be real-valued functions on some partially ordered set .P;6/, being
locally finite (i.e., all intervals Œx; y� are finite) and having a least element 0.
Consider the system of equations

f .x/ D
X

y6x

g.y/ .x 2 P/: (2.17)

Knowing f , the problem is to solve (2.17), that is, to express g in terms of f .
The function g is called the Möbius inverse of f . Rota proved that there always
exists a unique solution to (2.17), given by

g.x/ D
X

y6x

	.y; x/f .y/ (2.18)

where 	, called the Möbius function, is defined inductively by

	.x; y/ D
8
<

:

1; if x D y
�Px6t<y 	.x; t/; if x < y
0; otherwise:

(2.19)

Note that 	 depends solely on the structure of .P;6/.
The original definition of Möbius was given for the set of integers ordered

by the integer division; i.e., a 6 b if b is a multiple of a. Now, letting .P;6/ D
.2X;�/, (2.17) reduces to (2.16). Let us find (2.15) using recursion formula
(2.19). It suffices to show that the Möbius function is 	.A;B/ D .�1/jBnAj, for
any A � B � X and 0 otherwise. The latter is clear from (2.19) and we show
the case A � B � X by induction on the size of B n A. For jB n Aj D 1, we

5August Ferdinand Möbius (Schulpforta, 1790 – Leipzig, 1868) is a German mathematician and
astronomer. He discovered the famous Möbius strip, a non-orientable two-dimensional surface
with only one side when embedded in three-dimensional Euclidean space.
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have:

	.A;B/ D �	.A;A/ D �1:

Suppose the formula holds till jBnAj D k for some k, and consider that jBnAj D
k C 1. We have

	.A;B/ D �
X

C2ŒA;BŒ
	.A;C/ D �

X

C2ŒA;BŒ
.�1/jCnAj D �.0 � .�1/jBnAj/

D .�1/jBnAj;

using (1.1). In Sect. 2.12, we will find that this result is a particular case of a
more general relation (Theorem 2.44).

(iii) The fact that the Möbius transform of a set function is closely linked to its
derivatives is not surprising if one sees (2.17) as the discrete version of the
integral equation

f .x/ D
Z x

0

g.y/ dy;

whose solution is g.x/ D f 0.x/, assuming f .0/ D 0.
(iv) A last remark on terminology. The standard name for mv is the Möbius

inverse of v. The term “Möbius transform,” although convenient and popular in
decision making and game theory as it indicates that the original information
(capacity, game) has been transformed, is however unfortunate because it
conveys in the field of combinatorics exactly the inverse meaning; i.e., our
Möbius transform is in fact the inverse Möbius transform (see, e.g., Björklund
et al. [33]).

}

2.10.1 Properties

Theorem 2.33 Let v be a game on X. Then

(i) v is additive if and only if mv.A/ D 0 for all A � X, jAj > 1. Moreover, we
have mv.fig/ D v.fig/ for all i 2 X;

(ii) v is monotone if and only if

X

i2L�K

mv.L/ > 0 .K � X; i 2 K/I
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(iii) Let k > 2 be fixed. v is k-monotone if and only if

X

L2ŒA;B�
mv.L/ > 0 .A;B � X; A � B; 2 6 jAj 6 k/I

(iv) If v is k-monotone for some k > 2, then mv.A/ > 0 for all A � X such that
2 6 jAj 6 k;

(v) v is a nonnegative totally monotone game if and only if mv > 0;
(vi) A set function 
 is constant over 2X if and only if m
.A/ D 0 for all A ¤ ¿. In

this case, m
.¿/ D 
.A/, A 2 2X.

Proof

(i) It is easy to see that mv.fig/ D v.fig/ for all i 2 X, and mv D 0 otherwise is a
solution of (2.16). By uniqueness of the solution (Remark 2.32(ii)), this is the
Möbius transform.

(ii) It suffices to check whether v.A [ i/ > v.A/ for all i 62 A and all A � X. We
have:

0 6 v.A [ i/� v.A/ D
X

B�A[i

mv.B/�
X

B�A

mv.B/ D
X

i2B�A

mv.B/:

(iii) We know by Theorem 2.21 (i) that v is k-monotone for some k if and only if
for every disjoint A;K � X with jKj 6 k,

�Kv.A/ > 0:

By Lemma 2.31, we find immediately the desired result.
(iv) Take A D B in (iii).
(v) Since a nonnegative and supermodular game is also monotone by Theo-

rem 2.20(iii), from (iv) and (ii), we deduce that mv.A/ > 0 for every A � X,
jAj > 1. Besides, mv.¿/ D 0.

(vi) Suppose 
 is constant. Then by Lemma 1.1(i) the result is immediate. The
converse is also immediate, using (2.16).

ut
(iii) is due to Chateauneuf and Jaffray [49], however our proof is different.

Later, we will give upper and lower bounds of the Möbius transform of a
normalized capacity (Theorem 2.63).

The following is useful.

Lemma 2.34 Let v be a game, and consider its conjugate v. The Möbius transform
of v is given by

mv.A/ D .�1/jAjC1X

B	A

mv.B/:
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Proof We use the fact that

Lmv.A/ D .�1/jAjC1mv.A/ .A � X/

where Lmv is the co-Möbius transform (see Sects. 2.11 and 2.12.4, (2.39) and
Theorem 2.48), given by

mv.A/ D
X

B	A

mv.B/:

Since v D v, we obtain the desired result. ut

2.10.2 Möbius Transform of Remarkable Games
and Capacities

Unanimity Games

We begin by remarking that the Möbius transform of unanimity games is particularly
simple. For any A � X, A ¤ ¿,

muA.B/ D
(
1; if B D A

0; otherwise.
(2.20)

Indeed, using (2.20) in (2.16), we immediately obtain uA (see also Theorem 2.56).

0-1-Capacities

We now provide the Möbius transform of 0-1-capacities.

Theorem 2.35 Let 	 be a 0-1-capacity, generated by the antichain A D
fA1; : : : ;Akg. Then

m	.B/ D
(
.�1/jIjC1; if B D S

i2I Ai for some I � f1; : : : ; kg; I ¤ ¿
0; otherwise:

Proof We prove that

	 D
X

I�Œk�
I¤¿

.�1/jIjC1uS
i2I Ai ;
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from which the desired result follows. This amounts to showing that

X

I�Œk�
I¤¿

.�1/jIjC1uS
i2I Ai.S/ D 1 (2.21)

for all S such that S � Ai for some Ai 2 A, and 0 otherwise. For a fixed S, define
the collection S D fAi 2 A W Ai � Sg, and let L D fi 2 Œk� W Ai � Sg. If S D ¿,
then S 6� S

i2I Ai, for all I � Œk�, I ¤ ¿. Therefore, the left term in (2.21) is equal
to 0, as desired. Suppose now that S ¤ ¿. Then

X

I�Œk�
I¤¿

.�1/jIjC1uS
i2I Ai.S/ D

X

I�L
I¤¿

.�1/jIjC1 D 1;

using (1.1). ut

Belief and Plausibility Measures

We know that belief measures are characterized by a nonnegative Möbius transform
[Theorem 2.33(v)].

Let Bel be a belief measure with Möbius transform m. We know that its conjugate
Bel is a plausibility measure, which we denote by Pl. We first express Pl in terms of
m. We have for every A � X,

Pl.A/ D Bel.X/� Bel.Ac/

D
X

B�X

m.B/ �
X

B�Ac

m.B/

D
X

B�X

m.B/ �
X

B\AD¿
m.B/

D
X

B\A¤¿
m.B/: (2.22)

Now, we can obtain the Möbius transform of Pl in terms of m by application of
Lemma 2.34:

mPl.A/ D .�1/jAjC1 Lm.A/ D .�1/jAjC1X

B	A

m.B/; (2.23)

where Lm is the co-Möbius transform of Bel (see Sects. 2.11 and 2.12.4).
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Possibility and Necessity Measures

Theorem 2.36 Let … be a possibility measure on X, and Nec its conjugate
(necessity measure). Then the Möbius transform of Nec is nonnegative and lives
on a chain A1 � A2 � � � � � Aq.

Proof We first prove by contradiction that the Möbius transform of Nec lives on a
chain. Suppose there exist A;B 2 2X with mNec.A/;mNec.B/ ¤ 0 such that A n B and
B n A are nonempty, and choose such A;B that are both smallest w.r.t. inclusion. We
prove that necessarily Nec.A \ B/ ¤ Nec.A/ ^ Nec.B/.

Suppose A \ B D ¿. Then there is no A0 � A such that mNec.A0/ ¤ 0, and
similarly for B, so that

Nec.A/ ^ Nec.B/ D mNec.A/ ^ mNec.B/ ¤ 0 D Nec.¿/ D Nec.A \ B/:

Suppose then that A \ B ¤ ¿. We have

Nec.A/ D mNec.A/C
X

C�A\B

mNec.C/

Nec.B/ D mNec.B/C
X

C�A\B

mNec.C/

Nec.A \ B/ D
X

C�A\B

mNec.C/:

Because mNec.A/;mNec.B/ are both nonzero, we have Nec.A \ B/ ¤ Nec.A/ ^
Nec.B/.

Second, we prove nonnegativity. Suppose mNec.A/ < 0 for some A in the chain,
and call A0;A00 the “neighbors” of A in the chain; i.e., A0 � A � A00. Then Nec.A/ <
Nec.A0/, which contradicts the monotonicity of Nec. ut

As a consequence, by Theorem 2.33(v), necessity measures are monotone
and totally monotone normalized capacities (i.e., belief measures), and possibility
measures are special cases of plausibility measures.

The precise determination of the Möbius transform of … and Nec can be readily
done from previous Theorem 2.36. Let � be the possibility distribution generating
…, with ran� n f0g D f�1; �2; : : : ; �qg its range after exclusion of the 0 value,
supposing 1 D �1 > �2 > � � � > �q > 0. We claim that the sets in the support of
mNec are given by

Ai D fx 2 X W �.x/ > � ig .i D 1; : : : ; q/ (2.24)

and

mNec.Ai/ D � i � � iC1 .i D 1; : : : ; q/; (2.25)
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with the convention �qC1 D 0. By (2.22), it suffices to check that the plausibility
measure Pl generated by mNec coincides with …. We have

Pl.A/ D
X

i2f1;:::;qg
A\Ai¤¿

mNec.Ai/ D
X

i>k0

mNec.Ai/ D �k0 ;

with ko such that �k0 D maxx2A �.x/. On the other hand, we have….A/ D �k0 .
The Möbius transform of … can be obtained from Lemma 2.34:

m….A/ D .�1/jAjC1X

B	A

mNec.B/ D .�1/jAjC1X

i>`0

mNec.Ai/ D .�1/jAjC1�`0

with `0 such that �`0 D minx2A �.x/. Hence,

m….A/ D .�1/jAjC1 min
x2A

�.x/: (2.26)

�-Measures

Theorem 2.37 The Möbius transform of a �-measure 	 is given by

m	.A/ D �jAj�1Y

i2A

	.fig/ .¿ ¤ A � X/

for any � > �1, � ¤ 0.

Proof We have, using (2.14)

	.A/ D 1

�

�Y

x2A

.1C �	.fxg//� 1
�

D 1

�

X

B�A
B¤¿

�
�jBj Y

x2B

	.fxg/
�

D
X

B�A
B¤¿

�
�jBj�1Y

x2B

	.fxg/
�

D
X

B�A

m	.B/:

ut
Corollary 2.38 A �-measure is a belief measure if � > 0, and a plausibility
measure otherwise.

Proof If � D 0, 	 is a probability measure, therefore a belief measure. Clearly, m	

is nonnegative when � > 0, and because 	 is monotone, it follows that it is a belief
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measure by Theorem 2.33(v). Now, if �1 < � < 0, we put �0 D � �
�C1 > 0. By

Theorem 2.27, we deduce that 	 is a plausibility measure. ut
(See Wang and Klir [343, Theorem 4.21] for these two results.)

2.11 Other Transforms

We may take a more general viewpoint by considering the Möbius transform as a
transformation acting on the space of set functions on X, denoted by R

.2X/, that is, a
mapping T W R.2X/ ! R

.2X/, assigning to any set function 
 its transform T.
/ by T.
A transformation T is linear if T.˛
1C
2/ D ˛T.
1/CT.
2/ for any set functions


1; 
2 and ˛ 2 R. It is invertible if T�1 exists.

Note: Although this is not mathematically correct, we will in the whole book not distinguish
any more between “transform” and “transformation” and speak only of “transform”. The
fact is that this distinction causes more intricacies than it clarifies the things, and also it
seems to be a widespread usage.

We observe that the Möbius transform is linear and invertible. It is the usage to
call the inverse Möbius transform the Zeta transform.

We introduce three other natural transforms that are useful. We set in all this
section jXj D n.

Definition 2.39 (Grabisch et al. [178]) The co-Möbius transform Lm is a linear
invertible transform, defined for any set function 
 by

Lm
.A/ D
X

B	XnA

.�1/n�jBj
.B/ D
X

B�A

.�1/jBj
.X n B/ (2.27)

for all A � X.

The inverse transform is given by


.A/ D
X

B�XnA

.�1/jBj Lm
 .B/: (2.28)

Remark 2.40 It is known in Dempster-Shafer theory under the name of “commonal-
ity function” (Shafer [296]), and in possibility theory under the name of “guaranteed
possibility measure;” see, e.g., Dubois and Prade [109], and Chap. 7. }

Definition 2.41 (Grabisch [163]) The interaction transform I is a linear invertible
transform, defined for any set function 
 by

I
.A/ D
X

B�XnA

.n � b � a/ŠbŠ

.n � a C 1/Š
�A
.B/ D

X

K�X

jX n .A [ K/jŠjK n AjŠ
.n � a C 1/Š

.�1/jAnKj
.K/

(2.29)
for all A � X, where a; b; k are cardinalities of subsets A;B;K, respectively.
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The second equality is obtained from the first one as follows:

I
.A/ D
X

B�XnA

.n � b � a/ŠbŠ

.n � a C 1/Š

X

L�A

.�1/jAnLj
.B [ L/

D
X

K�X

jX n .A [ K/jŠjK n AjŠ
.n � a C 1/Š

.�1/jAnKj
.K/;

letting K D B [ L.
The inverse transform will be given in Sect. 2.12 [Eq. (2.43)].

Definition 2.42 (Roubens [278]) The Banzhaf interaction transform is a linear
invertible transform, defined for any set function 
 by

I
B.A/ D
�1

2

�n�a X

B�XnA

�A
.B/ D
�1

2

�n�a X

K�X

.�1/jAnKj
.K/ (2.30)

for all A � X, where a is the cardinality of A. The second equality is obtained as for
the interaction transform.

The inverse transform is given by


.A/ D
X

K�X

�1

2

�k
.�1/jKnAjI
B.K/ (2.31)

for all A � X.

Remark 2.43 The two interaction transforms presented above have their origin in
cooperative game theory and multicriteria decision making, as an extension of
the Shapley value [298] and Banzhaf value [17] (or Banzhaf power index) (see
Sect. 3.5 for a formal definition of a value). In the context of cooperative games
and voting games, the Shapley and Banzhaf values, which we denote by Sh and
B respectively, assign to any game v a vector Sh.v/ (respectively, B.v/) in R

X ,
whose coordinate i is the “average” marginal contribution of player i 2 X. The
marginal contribution of i in coalition S is simply �iv.S/, and the way the average
is computed over all coalitions differs for the Shapley and Banzhaf values. More
precisely,

Sh
i .v/ D

X

S�Xni

sŠ.n � s � 1/Š

nŠ

�
v.S [ i/ � v.S/� D Iv.fig/ (2.32)

B
i .v/ D 1

2n�1
X

S�Xni

�
v.S [ i/� v.S/

� D IvB.fig/; (2.33)
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for any i 2 X. The Banzhaf value is often used as a power index in voting games,
while the Shapley value has many applications in economics and computer sciences
(see, e.g., Moretti and Patrone [247]) because, due to its property

Pn
iD1 Sh

i .v/ D
v.N/ (see Theorem 2.45(ii) hereafter), it can be used as a rule of sharing of the
total worth v.N/. We will return to the Shapley value and interaction transform in
Chap. 6.

Finally, we mention that the interaction and Banzhaf interaction have been
axiomatized in the framework of cooperative games by Grabisch and Roubens [180]
(see also Fujimoto et al. [146]). }

All conversion formulas between these transforms are established in the subse-
quent sections, and are summarized in Appendix A, Tables A.2 and A.3. Still some
other transforms are introduced in Sect. 2.16.

2.12 Linear Invertible Transforms

We investigate the case of linear invertible transforms, called hereafter operators.
This will permit us to derive in a simple way all conversion formulas between the
different representations. This section is mainly based on Denneberg and Grabisch
[82]. Throughout it we assume jXj D n.

2.12.1 Definitions and Examples

An operator is a two-place set function ˆ W 2X � 2X �! R. The multiplication ?
between operators and set functions is defined as follows, for every A;B � X

.ˆ ? ‰/.A;B/ D
X

C�X

ˆ.A;C/‰.C;B/;

.ˆ ? 
/.A/ D
X

C�X

ˆ.A;C/
.C/;

.
 ? ‰/.B/ D
X

C�X


.C/‰.C;B/:

Defining a linear order on 2X that is an extension of the partial order induced
by � (i.e., A � B implies that A is ranked before B), we can identify 2X with
f1; 2; : : : ; 2ng, and ? becomes simply the ordinary multiplication of square matrices
or matrices and vectors.
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The Kronecker’s delta

�.A;B/ D
(
1; if A D B

0; otherwise

is the unique neutral element from the left and from the right. If ˆ is invertible, the
inverse of ˆ is denoted by ˆ�1, satisfying ˆ ? ˆ�1 D �, ˆ�1 ? ˆ D �.

Noting that the family

G D fˆ W 2X � 2X ! R W ˆ.A;A/ D 18A � X; ˆ.A;B/ D 0 if A 6� Bg

of functions of two variables corresponds to triangular matrices with 1 on the
diagonal (and therefore invertible), it follows that .G; ?/ forms a group, and the
inverseˆ�1 2 G of ˆ 2 G can be computed recursively using

ˆ�1.A;B/ D
8
<

:

1; if A D B

� P

A�C
B
ˆ�1.A;C/ˆ.C;B/; if A � B:

(2.34)

(Berge [20, Chap. 3, Sect. 2]).
We introduce a first fundamental operator, the Zeta operator Z.A;B/, defined by

Z.A;B/ D
(
1; if A � B

0; otherwise;

and its inverse, the Möbius operator. Indeed, if we compare it with (2.16), we find


 D m
 ? Z; (2.35)

and therefore m
 D 
 ? Z�1 with

Z�1.A;B/ D
(
.�1/jBnAj; if A � B

0; otherwise.

With the help of the Zeta operator, we introduce the co-Möbius transform

Lm
 D Z ? m
 D Z ? 
 ? Z�1:

We will prove later that this is indeed the co-Möbius transform introduced in
Definition 2.39.
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The next fundamental operator we introduce is the inverse Bernoulli operator �
(the reason for such a name will become clear later):

�.A;B/ D
(

1
jBnAjC1 ; if A � B

0; otherwise:

2.12.2 Generator Functions, Cardinality Functions

We turn now to a special class of operators in G, satisfying

ˆ.A;B/ D ˆ.¿;B n A/ for A � B; (2.36)

i.e., they can be represented by an ordinary set function '.A/ D ˆ.¿;A/, denoted
with the corresponding small letter. We call it the generator function. In fact, the
set of such operators forms an Abelian group, as well as the corresponding set of
generator functions:

g D f' W 2X ! R W '.¿/ D 1g

with operation ? defined by

' ?  .A/ D
X

C�A

'.C/ .A n C/; A � X:

The neutral element ı of g is

ı.A/ D
(
1; if A D ¿
0; otherwise

;

and the inverse of ' is denoted by '?�1. Since Z and � have property (2.36), we
can introduce the corresponding Zeta generator function and Bernoulli generator
functions:

�.A/ D 1 for all A 2 2X;

�.A/ D 1

jAj C 1
; A 2 2X:

If moreover' is a function only of the cardinality of sets, then we call it a cardinality
function, and the corresponding ˆ a cardinality operator. Note that Z and � have
also this property. It is convenient to associate to any cardinality function ' its
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cardinal representation b' W N0 ! R defined by b'.m/ D '.A/ for some A such
that jAj D m, with 0 6 m 6 n.

2.12.3 Inverse of Cardinality Operators

The inverse of a cardinality function is computed as follows.

Theorem 2.44 (Inverse of a cardinality function) Let ' 2 g be a cardinality

function. Then '?�1 is a cardinality function with cardinal representation b'?�1
given by

b'?�1.m/ D
(
1; if m D 0

�Pm�1
kD0

�m
k

�
b'.m � k/b'?�1.k/; if m 2 N:

(2.37)

Proof We apply the recursion formula (2.34) withˆ defined byˆ.A;B/ D '.BnA/
for A � B, which yields

'?�1.A/ D
(
1; if A D ¿
�PC
A '

?�1.C/'.A n C/; otherwise:

Usingb' we get

'?�1.A/ D �
m�1X

kD0

X

C
AjCjDk

'?�1.C/b'.m � k/ .jAj D m > 0/:

We show by induction that '?�1.A/ is a cardinality function. The assertion
obviously holds for jAj D 0. Supposing that '?�1.C/ D g.jCj/ for jCj < m, we
get for jAj D m,

'?�1.A/ D �
m�1X

kD0

 
m

k

!

g.k/b'.m � k/;

which clearly depends only on m. Hence we can put '?�1.A/ D g.m/ D b'?�1.m/,
and the proof is complete. ut
One can apply this formula to the Zeta generator function, and the readers can easily
check that the Möbius generator function �?�1 is

�?�1.A/ D .�1/jAj .A 2 2X/:
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Applying it to the Bernoulli function, we find for its cardinal representationb� that
b�.0/ D 1, and for any m 2 N,

b�.m/ D �
m�1X

kD0

 
m

k

!
1

m � k C 1
b�.k/ D � 1

m C 1

m�1X

kD0

 
m C 1

k

!

b�.k/: (2.38)

We recognize inb�.m/, m 2 N0, the recursive expression of the Bernoulli numbers
Bm [see (1.4)]. The sequence of Bernoulli numbers starts with B0 D 1;B1 D
� 1
2
;B2 D 1

6
;B3 D 0;B4 D � 1

30
; : : :, and B2mC1 D 0 for m > 1.

2.12.4 The Co-Möbius Operator

We recall that Lm
 D Z ? m
 D Z ? 
 ? Z�1. This yields

Lm
.A/ D
X

B	A

m
 .B/: (2.39)

We introduce the co-Möbius operator C by Lm
 D 
 ?C. Let us express C.A;B/. We
have

Lm
.A/ D
X

B�X

Z.A;B/
X

D�X


.D/Z�1.D;B/

D
X

B	A

X

D�B


.D/.�1/jBnDj

D
X

D�X


.D/
X

B	A[D

.�1/jBnDj

D
X

D�X


.D/.�1/jAj�jA\Dj X

B	A[D

.�1/jBn.A[D/j

D
X

D	XnA

.�1/jXnDj
.D/ D
X

D�A

.�1/jDj
.X n D/;

where we have used (1.1). We recognize (2.27). Hence the co-Möbius operator reads

C.A;B/ D
(
.�1/jXnAj; if X n A � B

0; otherwise.
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Clearly, it does not belong to G. The inverse formula is 
 D Lm
 ? C�1, and can be
found similarly:


.A/ D
X

B�XnA

.�1/jBj Lm
.B/;

which gives

C�1.A;B/ D
(
.�1/jBj; if B � X n A

0; otherwise.

We remark that, in a way similar to the Möbius transform (compare with
Lemma 2.31), we have the relation

Lm
 .A/ D �A
.X/ .A � X/; (2.40)

as it can be easily checked by comparing (2.27) with (2.2).

2.12.5 The Interaction Operator

The interaction transform of a set function 
 is defined by

I
 D � ? m
 D � ? .
 ? Z�1/

(we prove hereafter that this is indeed the transform introduced in Definition 2.41).
This gives immediately

I
.A/ D
X

K	A

1

k � a C 1
m
.K/ .A � X/: (2.41)

Let us express the Möbius transform of a set function 
 in terms of its interaction
transform. We have

m
 .A/ D ��1 ? I
 .A/ D
X

C	A

��1.A;C/I
.C/

D
X

C	A

�?�1.C n A/I
.C/

D
jAcjX

mD0
Bm

X

C	A
jCnAjDm

I
.C/;
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or more simply, letting jCj D c

m
.A/ D
X

C	A

Bc�aI
 .C/: (2.42)

We can now compute 
 in terms of its interaction transform.


.A/ D
X

C�A

m
.C/

D
X

C�A

X

D	C

BjDnCjI
.D/

D
X

D�X

� X

C�A\D

BjDnCj
�

I
.D/

D
X

D�X

 jA\DjX

jD0

 
jA \ Dj

j

!

BjDj�j

!

I
.D/:

Hence we find


.A/ D
X

D�X

ˇ
jDj
jA\DjI


.D/ .A � X/; (2.43)

with the coefficients ˇl
k defined by

ˇl
k D

kX

jD0

 
k

j

!

Bl�j .k 6 l/: (2.44)

The first values of ˇl
k are given in Table 2.2. The ˇl

k numbers have remarkable
properties, in particular they satisfy the property of Pascal’s triangle; i.e.,

ˇlC1
kC1 D ˇl

k C ˇlC1
k .0 6 k 6 l/:

They show also the following symmetry

ˇl
k D .�1/lˇl

l�k .0 6 k 6 l/:

The numbers ˇl
0 are the Bernoulli numbers, so that by the above symmetry and

B2mC1 D 0 for m > 1 we obtain that the diagonal elements ˇl
l D .�1/lˇl

0 D
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k n l 0 1 2 3 4

0 1 � 1
2

1
6

0 � 1
30

1 1
2

� 1
3

1
6

� 1
30

2 1
6

� 1
6

2
15

3 0 � 1
30

4 � 1
30

Table 2.2 The coefficients ˇl
k

.�1/lBl are the Bernoulli numbers except for l D 1, where ˇ11 D �B1. Furthermore,
the columns sum to zero:

lX

kD0
ˇl

k D 0 .l > 0/:

(see Denneberg and Grabisch [82], Grabisch [162] for further details).
We express properties of a set function in terms of its interaction transform.

Theorem 2.45 Let 
 be a set function on X. Then

(i) 
.¿/ D
X

K�X

BkI
 .K/;

(ii) 
.X/ D P
i2X I
.fig/C 
.¿/;

(iii) 
 is monotone if and only if
X

K�Xnfig
ˇ

jKj
jK\LjI


.K[fig/ > 0, 8i 2 X, 8L � Xnfig;

(iv) 
 is constant if and only if I
.A/ D 0 for all A ¤ ¿. In this case, I
.¿/ D 
.A/,
A 2 2X;

(v) If 
 is k-monotone for some 2 6 k 6 n, then I
.A/ > 0 for all A � X such that
2 6 jAj 6 k.

Proof (i) is clear from (2.43). For (ii), use (2.43) again, (i) and properties of ˇl
l .

(iii) By (2.16) we find


.A [ fig/ D
X

B�A

m
.B/C
X

B�A

m
.B [ fig/ .i 62 A/:

Then 
 is monotone if and only if the second sum is nonnegative for all i 2 X and all
A � X n fig. Transforming this sum like we did for proving (2.43) yields the desired
result.

(iv) Obvious from Theorem 2.33(vi) and (2.41).
(v) Clear from Definition 2.41 and Theorem 2.21(i). ut
The converse of Theorem 2.45(v) is false, as shown by the next example.
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Example 2.46 Take n D 3 and consider the game v defined by v.S/ D 1 if jSj > 1,
and 0 otherwise. Then Iv.S/ D 0 for any S s.t. jSj D 2, however, v is not 2-monotone
because v.123/C v.1/ 6> v.12/C v.13/. Þ

We return to the interaction transform and express it as an operator. From the
relation I
 D � ? .
 ? Z�1/ we define the interaction operator I by

I
 D 
 ? I:

Clearly, I is a linear operator on the set of set functions R.2
X/, but it does not belong

to the group G. Indeed, we know already by (2.43) that the inverse operator is
I�1.B;A/ D ˇ

jBj
jB\Aj, showing that I�1 and consequently I, do not belong to G.

It remains to express I. From I
 D � ? .
 ? Z�1/ we get

I
.A/ D
X

B	A

X

C�B

1

jB n Aj C 1
.�1/jBnCj
.C/

substituting D D B n A;CA D C \ A;CD D C \ D

D
X

D�Ac

1

jDj C 1

X

CD�D

.�1/jDnCDj X

CA�A

.�1/jAnCAj
.CA [ CD/

substituting C D CD;E D D n C;B D CA

D
X

C�Ac

X

E�AcnC

.�1/jEj 1

jCj C jEj C 1

X

B�A

.�1/jAnBj
.B [ C/

letting m D jAcj

D
mX

kD0

X

C�Ac

jCjDk

m�kX

jD0

X

E�AcnC
jEjDj

.�1/j
k C j C 1

X

B�A

.�1/jAnBj
.B [ C/

D
mX

kD0

X

C�Ac

jCjDk

m�kX

jD0

 
m � k

j

!
.�1/j

k C j C 1

X

B�A

.�1/jAnBj
.B [ C/:

Applying Lemma 1.1(iv) with n D m � k, we get finally

I
.A/ D
X

C�XnA

.m � k/ŠkŠ

.m C 1/Š

X

B�A

.�1/jAnBj
.B [ C/



2.12 Linear Invertible Transforms 69

with m D jX n Aj, k D jCj, which is Eq. (2.29). The operator I is therefore, using
the second equation in (2.29),

I.D;A/ D .�1/jAnDj jX n .A [ D/jŠjD n AjŠ
m � n C 1

:

Note the symmetry

I.Dc;A/ D .�1/jAjI.D;A/: (2.45)

2.12.6 The Banzhaf Interaction Operator

The Banzhaf interaction transform introduced in Sect. 2.11 can be treated in the
same way as the interaction operator, although computations are much simpler. First,
we introduce the operator‚, playing the same rôle as � in Sect. 2.12.1:

‚.A;B/ D
8
<

:

�
1
2

�jBnAj
; if A � B

0; otherwise.

Since ‚.A;B/ D ‚.¿;B n A/ and its value depends only on the cardinality

of A and B, it is a cardinality operator with generator function �.A/ D
�
1
2

�jAj
,

hence its inverse can be found via Theorem 2.44. Denoting byb�; b�?�1 the cardinal
representations of � and its inverse �?�1, we find

b�?�1.m/ D
8
<

:

1; if m D 0

�Pm�1
kD0

�m
k

��
1
2

�m�k
b�?�1.k/; if m 2 N:

Hence, unless m D 0, we have
Pm

kD0
�m

k

��
1
2

�m�k
b�?�1.k/ D 0. Comparing with

(1.1), the solution immediately appears to be b�?�1.k/ D
�

� 1
2

�k
. It follows that

‚�1.A;B/ D
8
<

:

�
� 1

2

�jBnAj
; if A � B

0; otherwise.
(2.46)

We define the Banzhaf interaction transform of a set function 
 by

I
B D ‚ ? m
 D ‚ ? .
 ? Z�1/
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which yields

I
B.A/ D
X

K	A

�1

2

�k�a
m
.K/ .A � X/: (2.47)

The inverse relation m
 D ‚�1 ? I
 reads, using (2.46),

m
.A/ D
X

K	A

�
� 1

2

�k�a
I
B.K/ .A � X/: (2.48)

It remains to express the Banzhaf interaction transform in terms of the set
function and vice versa. We have


.A/ D
X

C�A

m
 .C/ D
X

C�A

X

D	C

�
� 1

2

�d�c
I
B.D/

D
X

D�X

I
B.D/
X

C�A\D

�
� 1

2

�d�c

D
X

D�X

.�1/d
�1

2

�d
I
B.D/

X

C�A\D

.�2/c
„ ƒ‚ …

.�1/jA\Dj by Lemma 1.1(vi)

D
X

D�X

.�1/jDnAj
�1

2

�d
I
B.D/: (2.49)

From I
B D ‚ ? .
 ? Z�1/ we find

I
B.A/ D
X

B	A

�1

2

�b�a X

C�B

.�1/jBnCj
.C/

D
X

C�X


.C/
X

B	A[C

�1

2

�b�a
.�1/b�c

D
X

C�X

.�1/n�c
�1

2

�n�a

.C/

X

B	A[C

.�1/b�n
�1

2

�b�n

D
X

C�X

.�1/n�c
�1

2

�n�a

.C/

X

B	A[C

.�2/n�b

„ ƒ‚ …
.�1/n�jA[Cj by Lemma 1.1(vi)

D
�1

2

�n�a X

C�X

.�1/jAnCj
.C/:
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Thus, the Banzhaf interaction operator IB, defined by

I
B D 
 ? IB

is given by

IB.C;A/ D
�1

2

�n�a
.�1/jAnCj;

and we note as for the interaction operator the symmetry

IB.C
c;A/ D .�1/jAjIB.C;A/ .A;C � X/: (2.50)

We express properties of the set function in terms of its Banzhaf interaction
transform.

Theorem 2.47 Let 
 be a set function on X. Then

(i) 
.¿/ D P
B�X

�
� 1

2

�b
I
B.B/;

(ii) 
.X/ D P
B�X

�
1
2

�b
I
B.B/;

(iii) 
 is monotone if and only if
X

K�X;K3i

.�1/jKnAj�1
2

�k
I
B.K/ > 0, 8i 2 X, 8A �

X n i;
(iv) 
 is constant if and only if I
B.A/ D 0 for all A ¤ ¿. In this case, I
B.¿/ D 
.A/,

A 2 2X;
(v) If 
 is k-monotone for some 2 6 k 6 n, then I
B.A/ > 0 for all A � X such that

2 6 jAj 6 k.

Proof (i) and (ii) are obvious.
(iii) Monotonicity of 
 is equivalent to


.A [ i/ � 
.A/ D
X

B�A

m
.B [ i/ > 0 .i 2 X;A � X n i/:

Proceeding as for (2.49) with the above inequalities yields the desired result.
(iv) Obvious by Theorem 2.33(vi) and (2.47).
(v) Clear from Definition 2.42 and Theorem 2.21(i). ut

2.12.7 Transforms of Conjugate Set Functions

The Möbius transform of a set function is closely related to the co-Möbius transform
of its conjugate.
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Theorem 2.48 For any set function 
 on X, we have

Lm
.A/ D .�1/jAjC1m
 .A/ (2.51)

for all A � X, A ¤ ¿.

Proof From (2.27), we have

LmN
.A/ D
X

B�A

.�1/jBj N
.Bc/

D
X

B�A

.�1/jBj.
.X/� 
.B//

D �
X

B�A

.�1/jBj
.B/ D .�1/jAjC1m
 .A/:

ut
Let us now express the interaction and Banzhaf interaction transforms for the

conjugate set function.

Theorem 2.49 For any set function 
,

I
N
.A/ D

(

.X/� I
.¿/; if A D ¿
.�1/jAjC1I
 .A/; otherwise:

I
N

B.A/ D

(

.X/� I
B.¿/; if A D ¿
.�1/jAjC1I
B.A/; otherwise:

Proof From Theorem 2.45(iv) and the linearity of I, we obtain

I
N
 D 
.X/ı¿ � 
c ? I;

with the shorthand 
c.�/ D 
.�c/, and ı¿ is the set function defined by ı¿.¿/ D 1

and ı¿.A/ D 0 if A ¤ ¿. Now,


c ? I.A/ D
X

C�X


.Cc/I.C;A/

D
X

D�X


.D/I.Dc;A/

D .�1/jAj X

D�X


.D/I.D;A/ using (2.45)

D .�1/jAj
 ? I.A/;
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which proves the result. Proceed exactly in the same way for the Banzhaf interaction
transform. ut

2.13 k-Additive Games

Definition 2.50 A game6 v on X is said to be k-additive for some integer k 2
f1; : : : ; jXjg if mv.A/ D 0 for all A � X, jAj > k, and there exists some A � X
with jAj D k such that mv.A/ ¤ 0.

A game v is at most k-additive for some 1 6 k 6 jXj if it is k0-additive for some
k0 2 f1; : : : ; kg (equivalently, if mv vanishes for subsets of more than k elements).
The notion of k-additivity can also be applied to subclasses of games as well, like
capacities, belief measures, etc. The set of k-additive games on X (respectively,
capacities, etc.) is denoted by Gk.X/ (respectively, MGk.X/, etc.), while we denote
by G6k.X/;MG6k.X/ the set of at most k-additive games and capacities. Clearly,

G.X/ D G1.X/[ G2.X/[ � � � [ GjXj.X/ D G1.X/[ G62.X/[ � � � [ G6jXj.X/

and similarly for capacities and other subclasses. The first expression is a disjoint
union, while for the second note that G1.X/ D G61.X/ � G62.X/ � � � � �
G6jXj.X/ D G.X/.

Remark 2.51

(i) By Theorem 2.33(i) we see that G1.X/ is the set of additive games. Hence,
k-additivity can indeed be seen as a generalization of additivity.

(ii) By (2.41), one can see that mv can be replaced by Iv [or by IvB, using (2.47)]
without any change in Definition 2.50.

(iii) A k-additive game needs
�jXj
1

� C �jXj
2

� C � � � C �jXj
k

�
coefficients to be defined,

while a game needs in general 2jXj � 1 coefficients.
(iv) k-additive games were introduced under this name by the author [163].

We will see in Sect. 2.16 that they correspond to games with a polynomial
representation of degree k. The same idea was also proposed by Vassil’ev
[331].

}
We mention some elementary properties.

Lemma 2.52 The following holds:

(i) If v is a k-additive game for some 1 6 k 6 n, then

mv.A/ D Lmv.A/ D Iv.A/ D IvB.A/ .A � X; jAj D k/I

6The definition applies to any set function as well.
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(ii) If v is a 2-additive game, then

v.A/ D
X

fi;jg�A

v.fi; jg/� .jAj � 2/
X

i2A

v.fig/ .A � X; jAj > 2/;

and moreover, Iv.fi; jg/ D v.fi; jg/� v.fig/� v.f jg/ for any distinct i; j 2 X.

The proof is immediate and left to the readers.

2.14 p-Symmetric Games

As k-additivity generalizes the concept of additivity, p-symmetry generalizes the
concept of symmetric games. A game v on X is symmetric if v.A/ D v.B/ whenever
jAj D jBj. In other words, v depends only on the cardinality of sets.

Consider a game v on X. A nonempty subset A � X is a subset of indifference
for v if for all B1;B2 � A such that jB1j D jB2j, we have v.C [ B1/ D v.C [ B2/,
for all C � X n A.

Observe that any nonempty subset of a subset of indifference is also a subset of
indifference, and that any singleton is a subset of indifference. These two properties
imply that for any game v, it is possible to partition X into subsets of indifference
of v, A1; : : : ;A`; i.e., they satisfy Ai \ Aj D ¿ for i ¤ j, and

S`
iD1 Ai D X. We

recall that a partition � D fA1; : : : ;A`g of X is coarser than another partition
� 0 D fA0

1; : : : ;A
0
`0g of X if every block Ai of � is a union of blocks of � 0. One

is interested in finding a coarsest partition into subsets of indifference; i.e., with the
biggest possible blocks. Such a partition is unique (see below) and is called the basis
of v.

Definition 2.53 A game v on X is p-symmetric for some integer p 2 f1; : : : ; jXjg if
its basis contains p subsets.

As for k-additivity, any game is p-symmetric for some p, and has a basis. Therefore,
p-symmetry induces a partition of the set of games. The notion of at most p-
symmetry can be introduced as well.

Example 2.54 A symmetric game has basis fXg; i.e., it is a 1-symmetric game. Any
unanimity game uA, ¿ ¤ A � X, is a 2-symmetric game with basis fA;X n Ag. Þ

The basis of a game is closely related to notion of symmetry among elements of
X. This notion is particularly meaningful in game theory, where elements of X are
players. We say that i; j 2 X are symmetric for the game v (denoted by i �v j) if for
all A � X n fi; jg, v.A [ fig/ D v.A [ f jg/.
Theorem 2.55 The basis of a game v is the collection of equivalence classes of the
equivalence relation �v.
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Proof We first prove that �v is an equivalence relation on X. Reflexivity and
symmetry are obvious. To see transitivity, suppose that i �v j and j �v k, and
let us prove that i �v k. We have immediately that v.A [ i/ D v.A [ j/ D v.A [ k/
for all A � X n fi; j; kg. It remains to prove the equality v.A [ i/ D v.A [ k/ for all
A � X n fi; kg such that A 3 j, or equivalently, v.A [ fi; jg/ D v.A [ f j; kg/ for all
A � X n fi; j; kg. We have for any such A, v.A [ fi; jg/ D v.A [ fi; kg/ by j �v k,
and v.A [ fi; kg/ D v.A [ f j; kg/ by i �v j, and the desired equality is proved.

Now, any equivalence class of �v is a subset of indifference. Indeed, consider
Œi� the equivalence class of i 2 X, supposing jŒi�j > 2 (otherwise we are done),
and take two distinct B;B0 � Œi�, with B D fi1; : : : ; ibg, B0 D f j1; : : : ; jbg. Since
i1 �v j1; : : : ; ib �v jb, we find successively v.A [ i1/ D v.A [ j1/, v.A [ fi1; i2g/ D
v.A [ f j1; j2g/, and eventually v.A [ B/ D v.A [ B0/, for all A � X n Œi�.

Finally, there cannot be larger subsets of indifference than the equivalence
classes, because if v.A [ i/ D v.A [ j/ for some j 62 Œi� and all A � X n .Œi�[ j/, this
would imply j �v i, a contradiction. ut

Consider a p-symmetric game v, with basis fA1; : : : ;Apg, and a subset B � X.
Clearly, the value v.B/ depends uniquely on the numbers b1; : : : ; bp, with bi D
jAi \ Bj. Because 0 6 bi 6 jAij, it follows that v needs

Qp
iD1.jAij C 1/ coefficients

to be defined.
p-symmetric games have been introduced by Miranda and Grabisch [245, 246].

2.15 Structure of Various Sets of Games

We study the structure of the main families of games.

2.15.1 The Vector Space of Games

Considering the addition of functions and scalar multiplication, it is plain that G.X/
is a vector space. Two popular bases for G.X/ are the set of Dirac games and the set
of unanimity games. Take any A � X, A ¤ ¿. The Dirac game ıA centered at A
(also called identity game, see, e.g., Bilbao [21]) is the 0-1-game defined by

ıA.B/ D
(
1; if A D B

0; otherwise.

Theorem 2.56 (Bases of G.X/) The set of Dirac games fıAgA22Xnf¿g and the set of
unanimity games fuAgA22Xnf¿g are bases of G.X/ of dimension 2jXj � 1.
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Proof Since for any v 2 G.X/ we can write v D P
A�X;A¤¿ v.A/ıA, it is

clear that fıAgA22Xnf¿g spans G.X/. Let us prove it is an independent set, that is,
P

A22Xnf¿g �AıA D 0 if and only if �A D 0 for all A � X, A ¤ ¿. Suppose
on the contrary that this not true, and consider some nonnull coefficient �A0 . Then
P

A22Xnf¿g �AıA.A0/ D �A0 , a contradiction.

Let us prove that the set of unanimity games is a basis. Because there are 2jXj � 1
unanimity games, it suffices to prove that it forms an independent set. Assume on
the contrary that this is not true; i.e.,

P
A22Xnf¿g �AuA D 0 with some �A ¤ 0,

and consider A0, a minimal set in the collection fA � X W �A ¤ 0g. ThenP
A22Xnf¿g �AuA.A0/ D �A0 , a contradiction. ut
In the basis of Dirac games, the coordinates of a game v are simply

fv.A/gA22Xnf¿g.
Let us consider the basis of unanimity games. We have for any game v 2 G.X/

v.B/ D
X

A22Xnf¿g
�AuA.B/ D

X

A�B;A¤¿
�A .B � X/:

Comparing with (2.16), it follows that the coefficients of a game v in the basis of
unanimity games are nothing other than its Möbius transform: �A D mv.A/ for all
A � X;A ¤ ¿ [see also (2.20)].

It is easy to see that the set of conjugate of unanimity games is a basis as well.
We have for any A ¤ ¿,

uA.B/ D 1 � uA.B
c/ D

(
1; if B \ A ¤ ¿
0; otherwise.

Let us determine the coefficients of a game in this basis. We observe that for all
A � X,

v.A/ D v.X/� v.Ac/ D
X

B�X

mv.B/�
X

B�Ac

mv.B/ D
X

B\A¤¿
mv.B/:

On the other hand, the decomposition in the basis of the conjugate of unanimity
games reads

v.A/ D
X

B�X;B¤¿
�BuB.A/ D

X

B\A¤¿
�A .A � X/;

from which we deduce that �B D mv.B/, B 2 2X n f¿g. Using Theorem 2.48 and
(2.39), we find

�B D .�1/jBjC1X

A	B

mv.A/: (2.52)
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Remark 2.57

(i) The fact that the set of unanimity games is a basis of G.X/ was first shown by
Shapley [298, Lemma 3].

(ii) The above two bases can serve also as bases for the 2jXj-dim vector space of set
functions, by adding respectively ı¿ and u¿. We introduce other bases of set
functions in Sects. 2.16.1 and 2.17, see in particular the latter for the relation
between transforms and bases.

}
We end this section by presenting two natural orders for listing the coordinates

of a game. Indeed, if one wants to use vectors and matrices for representing games
and their transforms, it is necessary to fix an ordering of all subsets of X. The
most popular one is the lexicographic ordering subordinated to cardinality; i.e.,
considering smaller subsets first, and in case of equal cardinality, the lexicographic
ordering. This gives for X D f1; 2; 3; 4g, omitting braces and commas:

¿; 1; 2; 3; 4; 12; 13; 14; 23; 24; 34; 123; 124; 134; 234; 1234:

Although simple, this ordering does not lead to nicely structured matrices. Also,
if a new element is added to X, the whole list has to be rebuilt. The binary order
does not have these drawbacks, because it has a recursive structure. Each subset is
coded by an integer, whose binary code is precisely the characteristic vector of the
subset. For example, again with X D f1; 2; 3; 4g, the subset f1; 3g has characteristic
vector .1; 0; 1; 0/, written as 0101 (rightmost position corresponds to element 1 of
X), which is the binary code of 5. Then, subsets are ordered according to the ordering
of integers. We obtain:

¿; 1; 2; 12; 3; 13; 23; 123; 4; 14; 24; 124; 34; 134; 234; 1234:

The fundamental property of this list is that in order to get the list for f1; : : : ; n; n C
1g, we add to the list obtained for f1; : : : ; ng a duplicate of it, where to each subset
the element n C 1 is added. In [178], it is shown how this order permits to have a
simple matrix representation of most of the transforms given in Sect. 2.12. These
matrices are called “fractal” because of their replicative structure induced by the
binary order.

2.15.2 The Cone of Capacities

Since the null set function 0 is a capacity, the set of capacities MG.X/ is a pointed
cone. Indeed, it is plain that it is closed under multiplication by a nonnegative scalar.
Moreover, �MG.X/ is the set of antitone games (i.e., v.A/ > v.B/ whenever A �
B), therefore only 0 can be both in MG.X/ and �MG.X/.
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Also, note that unanimity games are extremal rays of MG.X/, that is, they cannot
be written as a conic combination of other capacities. To see this, consider the
unanimity game uA for some A ¤ ¿, and write

uA D
X

i2I

˛i	i

with ˛i > 0, and 	i 2 MG.X/, for all i 2 I. Then nonnegativity of the ˛i’s and 	i’s
entails 	i.B/ D 0 for all B 6� A, 8i 2 I. By monotonicity of the capacities 	i and
nonnegativity of the ˛i’s, we have for any B � A

1 D uA.B/ D
X

i2I

˛i	i.B/ >
X

i2I

˛i	i.A/ D uA.A/ D 1;

forcing equality throughout, and by nonnegativity again, this yields 	i.B/ D 	i.A/
for all B � A. It follows that 	i and uA are colinear for all i 2 I. However, unanimity
games are not the only extremal rays, because one cannot express any capacity as a
conic combination of unanimity games: linear combinations are necessary.

2.15.3 The Cone of Supermodular Games

The set of supermodular games (as well as the set of submodular games) is a cone.
However, it is not pointed as it contains the set of additive games, which form a
linear space.

We consider instead the cone of zero-normalized supermodular games, which
is pointed because the only zero-normalized additive game is the null game 0. We
know from Sect. 2.1 that any game v can be zero-normalized by considering v0 D
v � ˇ, where ˇ is an additive game defined by ˇ.fig/ D v.fig/ for all i 2 X.
Moreover, v is supermodular if and only if v0 is, hence v 7! v0 defines a surjective
mapping from the cone of supermodular games to the cone of supermodular zero-
normalized games. Let us denote the latter by GÞ.X/.

The problem of finding the extremal rays of GÞ.X/ is difficult. In his 1971 paper
[301], Shapley gives the 37 extremal rays of GÞ.X/with jXj D 4, computed by S. A.
Cook, and says that “for larger n little is known about the set of all extremals”. Later,
Rosenmüller and Weidner [276] find all extremal rays of the cone of nonnegative
supermodular games (it differs from GÞ.X/ only by the addition of the extremal
rays ufig, i 2 X) by representing each such game as a maximum over shifted additive
games:

v D max.m1 � ˛1; : : : ;mt � ˛t/

where m1; : : : ;mt are additive games and ˛1; : : : ; ˛t 2 RC. Up to some additional
conditions, the above representation can be put into a unique canonical form. For a
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given v and some H � f1; : : : ; tg, jHj > 2, where t pertains to the canonical form,
consider the collection SH of sets such that v.S/ D mi.S/�˛i for every i 2 H. Then
v is an extremal ray if and only if m1; : : : ;mt are the unique solution of the systems

mi.S/� ˛i D v.S/ .i 2 H; S 2 SH/

for all H � f1; : : : ; tg, jHj > 2. We refer the readers to [276] for the details.
Later, Studený and Kroupa [317] find out another criterion for finding the

extremal rays of GÞ.X/, based on the fact that supermodular games are exact and
their core coincides with the Weber set (see Chap. 3 and especially Sect. 3.4 for the
necessary concepts in what follows); i.e., any supermodular v can be written as a
minimum over the marginal vectors of v (which are the extreme points of its core)

v D min
�2S.X/ x

�;v ;

where S.X/ is the set of permutations on X (observe the duality with the approach
of Rosenmüller and Weidner). Then v is an extremal ray of GÞ if and only if every
solution fy�g�2S.X/ of the system

y�i D 0 .i 2 X s.t. x�;vi D 0; � 2 S.X//
X

i2S

y�i D
X

i2S

y�i .S � N; �; � 2 S.X/ s.t. v.S/ D
X

i2S

x�i D
X

i2S

x�i /

is equal to fx�;vg�2S.X/ up to a real multiplicative constant.

2.15.4 The Cone of Totally Monotone Nonnegative Games

We know from Theorem 2.20(iii) that totally monotone nonnegative games are
exactly totally monotone capacities. Therefore, they constitute a subset of the cone
of capacities, which we denote by GC.X/ for reasons that will become clear in the
next paragraph. By Theorem 2.33(v), we know that totally monotone capacities have
a nonnegative Möbius transform. Therefore, they form a cone too, which is pointed.

As above, unanimity games are extremal rays of GC.X/, but in this case, there
are no extremal rays other than unanimity games, because any totally monotone
capacity can be expressed as a conic combination of unanimity games (due to
nonnegativity of the Möbius transform). In summary:

Theorem 2.58 GC.X/ is a pointed cone, whose extremal rays are the unanimity
games uA, A 2 2X n f¿g.
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2.15.5 The Riesz Space of Games

(See Marinacci and Montrucchio [235], Gilboa and Schmeidler [156], and
Sect. 1.3.10 for definitions) We can endow G.X/ with a richer structure thanks
to the cone GC.X/. We introduce the partial order � on G.X/ as follows: v � v0 if
v � v0 2 GC.X/. Note that fv 2 G.X/ W v � 0g D GC.X/.

Endowed with �, G.X/ becomes an ordered vector space, whose positive cone is
GC.X/, hence the notation. Moreover, under the lattice operations _;^ induced by
�, it is a Riesz space.

Theorem 2.59 The ordered vector space .G.X/;�/ is a Riesz space, with lattice
operations given by

v1 _ v2 D
X

A22Xnf¿g
.mv1 .A/ _ mv2 .A//uA

v1 ^ v2 D
X

A22Xnf¿g
.mv1 .A/ ^ mv2 .A//uA:

Proof We only prove the result for _, a similar argument can be used for ^. We set

bv D
X

A22Xnf¿g
.mv1 .A/ _ mv2 .A//uA

and want to prove thatbv D v1 _ v2. We have for i D 1; 2,

bv � vi D
X

A22Xnf¿g

�
.mv1 .A/ _ mv2 .A//� mvi.A/

�
uA;

which yields bv � vi 2 GC.X/ because .mv1.A/ _ mv2 .A// � mvi.A/ > 0 for all
¿ ¤ A � X. It follows thatbv � vi, i D 1; 2. It remains to show thatbv is the least
upper bound of v1; v2, that is, for every bv0 such that bv0 � vi, i D 1; 2, we have
bv0 �bv.

Asbv0 � vi 2 GC.X/, we have mbv0�vi .A/ D mbv0

.A/� mvi .A/ > 0 for each A, and
i D 1; 2. This yields mbv0 > mv1 _ mv2 pointwise, which implies that

bv0 �bv D
X

A22Xnf¿g

�
mbv0

.A/� .mv1.A/ _ mv2.A//
�
uA

belongs to GC.X/. We conclude thatbv0 �bv, as desired. ut
The positive part and negative part of a game v are given by

vC D
X

A22Xnf¿g
.mv.A/ _ 0/uA (2.53)
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v� D
X

A22Xnf¿g
.�mv.A/ _ 0/uA: (2.54)

The absolute value of a game v is defined by jvj D vC C v�, and is given by

jvj D
X

A22Xnf¿g
jmv.A/juA:

The associated norm k � kc, called the composition norm (Gilboa and Schmeidler
[157]), is defined by kvkc D jvj.X/ D vC.X/Cv�.X/ D

X

A22Xnf¿g
jmv.A/j. Because

kv1 C v2kc D kv1kc C kv2kc holds for any v1; v2 2 GC.X/, it follows that k � kc is a
L-norm, and G.X/ an AL-space.

We end this paragraph by showing a decomposition theorem for games.

Theorem 2.60 For any game v 2 G.X/, the games vC; v� are the unique totally
monotone capacities such that

v D vC � v�

and

kvkc D kvCkc C kv�kc:

Proof We use a well-known result of decomposition for vectors in R
m: given z 2

R
m, the positive and negative parts of z, zC and z�, are the unique vectors in R

m

such that z D zC � z� and kzk1 D kzCk1 C kz�k1, where k � k1 is the L1-norm, that
is, kzk1 D Pm

iD1 jzij.
Clearly, by Theorem 2.56, to any game v corresponds a vector m in R

2n�1
containing the Möbius transform of v, and kvkc D kmk1. The correspondence being
a bijection, the desired result follows from the decomposition of real vectors. ut

2.15.6 The Polytope of Normalized Capacities

Taking for simplicity the basis of Dirac games, where coordinates of a game v are
simply fv.A/gA22Xnf¿g, the set of normalized capacities reads

MG0.X/ D
n
	 2 R

2jXj�1 W 	.A/ > 	.B/; ¿ ¤ B � A � X
	.A/ > 0; A � X
	.X/ D 1

o
:
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Removing redundant inequalities, we find

MG0.X/ D
n
	 2 R

2jXj�1 W 	.A [ fig/ > 	.A/; ¿ ¤ A � X; i 62 A
	.fig/ > 0; i 2 X
	.X/ D 1

o
: (2.55)

It follows that MG0.X/ is a polyhedron. Because for any set A 2 2X n f¿g, we have
0 6 	.A/ 6 1, the polyhedron is bounded, hence it is a polytope.

Theorem 2.61 (The extreme points of MG0.X/) (Stanley [316], Radojevic [272])
The set MG0.X/ of normalized capacities on X is a .2jXj �2/-dimensional polytope,
whose extreme points are all 0-1-capacities, except the null capacity 0. Moreover,
each inequality and equality in (2.55) defines a facet.

Proof We prove that every 0-1-capacity (different from 0) is an extreme point of
MG0.v/; i.e., it cannot be expressed as a convex combination of other capacities.
Take	 ¤ 0 a 0-1-capacity, and suppose that	 D ˛�C.1�˛/�0 for some ˛ 2 �0; 1Œ,
�; �0 2 MG0.X/. Consider A � X such that 	.A/ D 1. We have

1 D 	.A/ D ˛�.A/C .1 � ˛/�0.A/:

Since ˛ ¤ 0; 1 and �; �0 are normalized, it follows that necessarily �.A/ D �0.A/ D
1. Similarly, if A is such that 	.A/ D 0, the equality 0 D ˛�.A/ C .1 � ˛/�0.A/
entails by nonnegativity of �; �0 that �.A/ D �0.A/ D 0. This yields 	 D � D �0.

Conversely, suppose that 	 is an extreme point, but not a 0-1-capacity. Put

� D min.1 � max
AW	.A/<1	.A/; min

AW	.A/>0	.A//;

and define	0.A/ D 	.A/C� for all A such that	.A/ ¤ 0; 1, and 	00.A/ D 	.A/��
for all A such that 	.A/ ¤ 0; 1, and 	0.A/ D 	.A/ D 	00.A/ otherwise. Then 	0; 	00
are normalized capacities and 	 D 	0C	00

2
, a contradiction. ut

Recalling that 0-1-capacities are in bijection with antichains in .2X;�/
(Sect. 2.8), we see that the number of extreme points of MG0.X/ is extremely
large: it is M.jXj/ � 2 (do not forget that the null capacity 0, corresponding to the
empty antichain, has been removed), where M.n/ is the nth Dedekind number.

Let us prove a stronger result than Theorem 2.61, from which the latter is
obtained as a simple corollary. We let jXj D n for simplicity and write the
inequalities in (2.55) under a matrix form M	 > b, where 	 is a .2n � 1/-dim
vector with 	A D 	.A/ for all ¿ ¤ A � X, M is a matrix with a number of rows
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equal to

n C n.n � 1/C
 

n

2

!

.n � 2/C � � � C
 

n

k

!

.n � k/C � � � n � 1 D

n
�
1C

 
n � 1

1

!

C � � � C
 

n � 1

k

!

C � � � C 1
�

D n2n�1

and 2n � 1 columns, with entry

MA;iIB D

8
ˆ̂
<

ˆ̂
:

�1; if B D A

1; if B D A [ fig
0; otherwise

for A � X, i 2 X n A, and B � X, B ¤ ¿, and b is a n2n�1 dimensional zero
vector. Let us give an example with n D 3 and the following order on subsets:
¿; 1; 2; 3; 12; 13; 23; 123. The matrix M is given by

M D

�1 �2 �3 12 13 23 123
¿; 1
¿; 2
¿; 3
1; 2

1; 3

2; 1

2; 3

3; 1

3; 2

12; 3

13; 2

23; 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 2 3 12 13 23 123

1

1

�1 1

�1 1

�1 1

�1 1

�1 1

�1 1

�1 1

�1 1

�1 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Theorem 2.62 The matrix M is totally unimodular.

Proof We follow the argument in Miranda et al. [243, Theorem 2]. We prove that
M> is totally unimodular, which is equivalent to the desired result. We remark that
M> D .I;B/, where the submatrix I is a submatrix of the .2n � 1/-dimensional
identity matrix Id2n�1, and each column of B contains exactly one entry C1 and
one entry �1. It follows from Theorem 1.14 that B is totally unimodular. Now, it is
easy to see that .Id2n�1;B/ is also totally unimodular, and so is M> because it is a
submatrix of .Id2n�1;B/. ut
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The vector b being integer, it follows from Theorem 1.13 that the set of capacities
such that 	.X/ is integer is an integer polytope. In particular, if 	.X/ D 1, we
recover Theorem 2.61.

Normalized capacities take their value in Œ0; 1�. One may think that the Möbius
transform of normalized capacities take values in the symmetrized interval Œ�1; 1�.
The following result shows that this is far from being true: the Möbius transform
grows exponentially fast with jXj.
Theorem 2.63 (Exact bounds of the Möbius transform) For any normalized
capacity 	, its Möbius transform satisfies for any A � X, jAj > 1:

�
 

jAj � 1

l0jAj

!

6 m	.A/ 6
 

jAj � 1
ljAj

!

;

with

ljAj D 2


 jAj
4

�

; l0jAj D 2


 jAj � 1
4

�

C 1 (2.56)

and for jAj D 1 < n:

0 6 m	.A/ 6 1;

and m	.A/ D 1 if jAj D n D 1. These upper and lower bounds are attained by the
normalized capacities 	�

A; 	A�, respectively:

	�
A.B/ D

(
1; if jAj � ljAj 6 jB \ Aj 6 jAj
0; otherwise

	A�.B/ D
(
1; if jAj � l0jAj 6 jB \ Aj 6 jAj
0; otherwise

for any B � X.

We give in Table 2.3 the first values of the bounds.

Proof Let us prove the result for the upper bound when A D X. For any permutation
� 2 S.X/ and any capacity 	 2 MG0.X/, we define the capacity �.	/ 2 MG0.X/
by �.	/.B/ D 	.��1.B// for any B � X.

We observe that m	.X/ is invariant under permutation. Indeed,

m�.	/.X/ D
X

B�X

.�1/n�jBj	.��1.B//
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D
X

B0�X

.�1/n�jB0j	.B0/ (letting B0 D ��1.B//

D m	.X/:

jAj 1 2 3 4 5 6 7

u.b. of m	.A/ 1 1 1 3 6 10 15

l.b. of m	.A/ 1.0/ �1 �2 �3 �4 �10 �20
jAj 8 9 10 11 12

u.b. of m	.A/ 35 70 126 210 462

l.b. of m	.A/ �35 �56 �126 �252 �462
Table 2.3 Lower and upper bounds for the Möbius transform of a normalized
capacity

For every set function 	 on X, define its symmetric part 	s D 1
nŠ

P
�2S.X/ �.	/,

which is a symmetric function. By convexity of MG0.X/, if 	 2 MG0.X/, then so
is 	s, and by linearity of the Möbius inverse, we have

m	s
.X/ D 1

nŠ

X

�2S.X/
m�.	/.X/ D 1

nŠ

X

�2S.X/
m	.X/ D m	.X/:

It is therefore sufficient to maximize m	.X/ on the set of symmetric normalized
capacities. But this set is also a convex polytope, whose extreme points are the
following f0; 1g-valued capacities 	k defined by

	k.B/ D 1 iff jBj > n � k .k D 0; : : : ; n � 1/:

Indeed, if 	 is symmetric, it can be written as a convex combination of these
capacities:

	 D 	.f1g/	n�1 C
nX

kD2

�
	.f1; : : : ; kg/ � 	.f1; : : : ; k � 1g/�	n�k:
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It follows that the maximum of m	.X/ is attained on one of these capacities, say 	k.
We compute

m	k.X/ D
X

B�X

.�1/jXnBj	k.B/ D
nX

iDn�k

.�1/n�i

 
n

i

!

D
kX

i0D0
.�1/i0

 
n

n � i0

!

D .�1/k
 

n � 1

k

!

; (2.57)

where the third equality is obtained by letting i0 D n � i and the last one follows
from (1.2). Therefore k must be even. If n � 1 is even, the maximum of

�n�1
k

�
for k

even is attained for k D n�1
2

if this is an even number, otherwise k D n�3
2

. If n � 1

is odd, the maximum of
�n�1

k

�
is reached for k D d n�1

2
e and k � 1 D b n�1

2
c, among

which the even one must be chosen. As it can be checked (see Table 2.4 below), this
amounts to taking

k D 2
jn

4

k
;

that is, k D ln as defined in (2.56), and we have defined the capacity

	�.B/ D 1 if n � ln 6 jBj 6 n;

which is 	�
X as defined in the theorem.

For establishing the upper bound of m	.A/ for any A � X, remark that the value
of m	.A/ depends only on the subsets of A. It follows that applying the above result
to the sublattice 2A, the set function 
�

A defined on 2X by


�
A .B/ D 1 if B � A and jAj � ljAj 6 jBj 6 jAj; and 0 otherwise;

yields an optimal value for m	.A/. It remains to turn this set function into a capacity
on X, without destroying optimality. This can be done since 
�

A is monotone on 2A,
so that taking the monotonic cover of 
�

A yields an optimal capacity, given by

mc.
�
A /.B/ D max

C�B

�

A .C/ D 1 if jAj � ljAj 6 jB \ Aj 6 jAj; and 0 otherwise;

which is exactly 	�
A as desired. Note however that this is not the only optimal

solution in general, since values of the capacity on the sublattice 2XnA are irrelevant.
One can proceed in a similar way for the lower bound. In this case however, as it

can be checked, the capacity must be equal to 1 on the l0n C 1 first lines of the lattice
2X , with l0n D 2

�
n�1
4

˘C 1 (see Table 2.4). ut
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n=k 0 1 2 3 4 5 6 7 8 9 10 11

n D 1 1

n D 2 1 �1
n D 3 1 �2 1

n D 4 1 �3 3 �1
n D 5 1 �4 6 �4 1

n D 6 1 �5 10 �10 5 �1
n D 7 1 �6 15 �20 15 �6 1

n D 8 1 �7 21 �35 35 �21 7 �1
n D 9 1 �8 28 �56 70 �56 28 �8 1

n D 10 1 �9 36 �84 126 �126 84 �36 9 �1
n D 11 1 �10 45 �120 210 �252 210 �120 45 �10 1

n D 12 1 �11 55 �105 330 �462 462 �330 165 �55 11 �1
Table 2.4 Computation of the upper (red) and lower (blue) bounds

The value of the capacity 	 is 1 for the k C 1 first lines of the lattice 2X . Each entry .n; k/ equals
m	.X/, as given by (2.57)

This result appears in Grabisch and Miranda [179] (corrected version of [244]).
It can be shown that the exact bounds of I	, I	B are the same, attained by the same
capacities [179]. Using the well-known Stirling’s approximation

�
2n
n

� ' 4np
�n

for
n ! 1, we obtain the asymptotic behavior of the bounds:

� 4
n
2

p
�n
2

6 m	.X/ 6 4
n
2

p
�n
2

: (2.58)

Remark 2.64

(i) The polytope of normalized capacities is a particular case of order polytopes
studied among others by Stanley [316]. Considering a poset .P;6/ of n
elements, the order polytope of P is defined by

O.P/ D f f W P ! R s.t. 0 6 f .x/ 6 1; f .x/ 6 f .y/ if x 6 yg:

MG0.X/ is recovered with .P;6/ D .2X;�/. Theorem 2.61 still holds mutatis
mutandis in this general framework. In particular, the extreme points of O.P/
are bijectively associated to the antichains of P.

Stanley also introduces a related polytope, called the chain polytope C.P/ of
P. It is defined as

C.P/ D fg W P ! R s.t. g.x/ > 0; g.y1/C g.yk/ 6 1

for all maximal chains y1; : : : ; yk in Pg:
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It is shown that the extreme points of C.P/ are the characteristic functions of
antichains of P, showing that C.P/ and O.P/ have the same number of extreme
points. However, in general faces are different. The following function  is a
continuous piecewise linear bijection between O.P/ and C.P/:

 W O.P/ ! C.P/I  ı f .x/ D minf f .x/� f .y/; x covers yg:

Applied to our case, the mapping  is related to the derivative of a capacity. For
a capacity 	,  ı 	.A/ D mini2A �i	.A n fig/, for A 2 2X .

(ii) A detailed study of the polytope of normalized capacities was done by
Combarro and Miranda [56]. They studied the adjacency of extreme points in
MG0.X/, where two extreme points are adjacent if they belong to the same edge
(face of dimension 1). In particular, they showed that an extreme point chosen at
random is adjacent to uX with probability tending to 1 when jXj tends to infinity.
The same result holds for the conjugate game uX . Moreover, the diameter of
MG0.X/, i.e., the maximal number of adjacency relations necessary to relate
any two extreme points, is 3 when jXj > 3.

}

2.15.7 The Polytope of Belief Measures

Let us express the set B.X/ using the basis of unanimity games:

B.X/ D
n
m 2 R

2jXj�1 W m.A/ > 0; ¿ ¤ A � X
P

A�X;A¤¿ m.A/ D 1

o
: (2.59)

This is a .2jXj � 2/-dimensional polytope, because it is clearly bounded. Each
(in)equality defines a facet. This polytope is very simple, because it is merely
the intersection of the hyperplane

P
A�X;A¤¿ m.A/ D 1 with the positive orthant

(or, with the cone of totally monotone nonnegative games). Its extreme points are
therefore all 2jXj � 1 points of the form .0; : : : ; 0; 1; 0; : : : ; 0/. These correspond
exactly to the unanimity games uA, A � X;A ¤ ¿.

The result can be found also by simply remarking that the (unique) decomposi-
tion of a belief measure on the basis of unanimity games reduces to a convex sum.
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2.15.8 The Polytope of At Most k-Additive Normalized
Capacities

The study of MG6k.X/ reveals to be more difficult. We begin by studying the case
k D 1, that is, the set of probability measures. Proceeding as for belief measures,
the set

MG1.X/ D
n
m 2 R

jXj W mi > 0; i 2 X
P

i2X mi D 1

o

is a .jXj�1/-dimensional polytope, whose extreme points are all vectors of the form
.0; : : : ; 0; 1; 0; : : : ; 0/. These correspond to the unanimity games ufig, i 2 X, or put
differently, the set of Dirac measures on X.

Let us study MG62.X/, and write this set using the basis of unanimity games.
Discarding all null coordinates, we obtain

MG62.X/ D
n
m 2 R

�.2/ W mi > 0; i 2 X
mi CP

j2K mij > 0; i 2 X;¿ ¤ K � X n i
P

i2X mi CP
fi;jg�X mij D 1

o

(2.60)

with �.2/ D �jXj
1

� C �jXj
2

�
, and where we have written for simplicity mi;mij instead

of m.fig/;m.fi; jg/. The two first sets of inequalities come from monotonicity
[Theorem 2.33(ii)].

Theorem 2.65 (The extreme points of MG62.X/) (Miranda et al. [243, Proposi-
tion 11]) MG62.X/ is a .�.2/� 1/-dimensional polytope, whose extreme points are
all at most 2-additive normalized 0-1-capacities. These 0-1-capacities are of three
different types:

(i) The unanimity games ufig, i 2 X (these are the extreme points of MG1.X/);
(ii) The unanimity games ufi;jg, fi; jg � X;

(iii) The conjugate of the unanimity games ufi;jg, fi; jg � X, given by

ufi;j;g D ui C uj � ufi;jg:

Moreover, the convex decomposition of any 	 2 MG62.X/ is

	 D
X

fi;jg�X W m
	
ij<0

.�m	
ij /ufi;jg C

X

fi;jg�X W m
	
ij>0

m	
ij ufi;jg

C
X

i2X

�
m	

i C
X

j2Xni W m
	
ij<0

m	
ij

�
ufig; (2.61)

using the above shorthand.
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Proof By Theorem 2.61, we know that any normalized 0-1-capacity is an extreme
point of MG0.X/. It is therefore plain that any 2-additive normalized 0-1-capacity
is an extreme point of MG62.X/. Then we have to check that the above candidates
are indeed 2-additive, normalized and 0-1-valued, and that there is no other extreme
point.

The first point is easy to check and is left to the readers. As for the second
point, we show that any 	 2 MG62.X/ can be written as (2.61), and that this
decomposition is indeed a convex combination. By 2-additivity, we have:

	 D
X

i2X

m	
i ui C

X

fi;jg�X

m	
ij ufi;jg

D
X

i2X

m	
i ui C

X

i; j W m
	
ij>0

m	
ij ufi;jg C

X

i; j W m
	
ij<0

m	
ij ufi;jg

D
X

i2X

m	
i ui C

X

i; j W m
	
ij>0

m	
ij ufi;jg C

X

i; j W m
	
ij<0

m	
ij .ui C uj � ufi;jg/

D
X

i; j W m
	
ij>0

m	
ij ufi;jg C

X

i; j W m
	
ij<0

.�m	
ij /ufi;jg C

X

i2X

�
m	

i C
X

j W m
	
ij<0

m	
ij

�
ufig;

the desired expression. We check now that this is convex combination. The
coefficients of terms in ufig are nonnegative by monotonicity of 	 [second set of
inequalities in (2.60)], so that all coefficients are nonnegative. It remains to prove
that they sum up to 1. This sum is:

�
X

m
	
ij<0

m	
ij C

X

m
	
ij>0

m	
ij C

X

i2X

m	
i C

X

i2X

X

j¤i W m
	
ij<0

m	
ij D

X

i2X

m	
i C

X

m
	
ij>0

m	
ij C

X

m
	
ij<0

m	
ij D 	.X/ D 1:

This completes the proof. ut
The above result permits to know the number of extreme points of MG62.X/.

Summing the cardinality of all three types of extreme points, we find jXjC
 

jXj
2

!

C
 

jXj
2

!

D jXj2.

Remark 2.66

(i) Up to now, no other remarkable result is known for MG6k.X/ when k > 2.
Miranda et al. [243] have found an example of extreme point in MG63.X/
with jXj D 4, which is not a 0-1-capacity. It seems that apart from at most k-
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additive 0-1-capacities, many other extreme points exist, and that the structure
of k-additive capacities is very complex. The readers can consult Combarro and
Miranda [57] for further results and an algorithm to compute extreme points.

(ii) The polytope of p-symmetric normalized capacities was studied by Miranda et
al. [243]. Its structure is close to the one of normalized capacities because it is
an order polytope [Remark 2.64(i)].

}

2.16 Polynomial Representations

We set jXj D n for convenience in the whole section, and denote the set f1; : : : ; ng
by Œn�.

Set functions can be seen as functions on the vertices of the hypercube Œ0; 1�n,
by means of the characteristic function of sets 1: A 7! 1A, which is an isomorphism
between 2X and f0; 1gn. A pseudo-Boolean function is any function f W f0; 1gn ! R;
x 7! f .x/. To any set function 
 corresponds a unique pseudo-Boolean function f

defined by

f
.x/ D 
.fi 2 X W xi D 1g/ .x 2 f0; 1gn/:

Conversely, to any pseudo-Boolean function f corresponds a unique set function 
f

defined by


f .A/ D f .1A/ .A � X/:

In short, 
f D f ı 1, and f
 D 
 ı 1�1. The mapping 1 can be seen as a coding
function. Other coding functions are possible, see Remark 2.68(iii). We denote by
PB.n/ the set of pseudo-Boolean functions on f0; 1gn. It is a vector space.

Definition 2.67 The derivative with respect to coordinate i of a pseudo-Boolean
function is defined as for ordinary functions by

�i f .x/ D f .x1; : : : ; xi�1; 1; xiC1; : : : ; xn/ � f .x1; : : : ; xi�1; 0; xiC1; : : : ; xn/:

Derivatives w.r.t. several coordinates are defined recursively as follows: for any A �
Œn�;A ¤ ¿,

�A f .x/ D �fig.�Anfig f .x// for some i 2 A;
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with �fig f D �i f , and �¿ f D f . Recalling the derivative of set functions
(Definitions 2.14 and 2.15), it is easy to see that they correspond:

�A
 f .B/ D �A f .1B/ .A;B � Œn�/:

Remark 2.68

(i) Pseudo-Boolean functions were introduced by Hammer and Rudeanu [191],
and have many applications in operations research, optimization (Boros and
Hammer [36]), circuit design, coding theory, and many other topics in theo-
retical computer sciences (Crama and Hammer [63, Chap. 13], de Wolf [73],
O’Donnell [258, 259]).

(ii) Any definition or property established for set functions can be transposed
to pseudo-Boolean functions and vice versa. In particular, grounded pseudo-
Boolean functions (that is, vanishing at 0) correspond to games, while capac-
ities are grounded nondecreasing pseudo-Boolean functions. The interest of
pseudo-Boolean functions is that they lead to polynomial representations and
their extensions on the hypercube Œ0; 1�n, which will be seen to be integrals,
and also to approximation problems.

(iii) The coding of a subset A of Œn� by 0 and 1 can be changed to �1 and C1 if this
happens to be more convenient. The latter is often used in theoretical computer
sciences (O’Donnell [258, 259]); more on this in Sect. 2.16.2.

}

2.16.1 Bases of PB.n/

Let f be a pseudo-Boolean function. It is easy to check that it can be written as

f .x/ D
X

A�Œn�
f .1A/

Y

i2A

xi

Y

i2Ac

.1 � xi/; (2.62)

for every x 2 f0; 1gn, and with the convention
Q

i2¿ xi D 1. Indeed, if x D 1B for
some B � Œn�, the term

Q
i2A xi

Q
i2Ac.1�xi/ is nonnull if and only if A D B. Hence,

the pseudo-Boolean function
Q

i2A xi
Q

i2Ac.1 � xi/ corresponds to the Dirac game
ıA (with the exception that ı¿ is not a game!). We know from Theorem 2.56 that the
set of Dirac games forms a basis of the set of games G.X/. Hence, the polynomialsQ

i2A xi
Q

i2Ac.1 � xi/ form a 2n-dimensional basis of the vector space PB.n/.7 We
call (2.62) the standard representation of f .

From Theorem 2.56 again, we know that the unanimity games form a basis of
G.X/. It is easily seen that unanimity games correspond to the monomials

Q
i2A xi.

7Our proof of Theorem 2.56 extends easily if ı¿ is considered.
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Hence, another polynomial representation of pseudo-Boolean functions is given by

f .x/ D
X

T�Œn�
aT

Y

i2T

xi; (2.63)

for every x 2 f0; 1gn, where the coefficients aT (this is the traditional notation)
form the Möbius transform of 
f , the set function associated to f . We call this
representation the Möbius representation of f .

Let us endow PB.n/ with the inner product

h f ; gi D 1

2n

X

x2f0;1gn

f .x/g.x/ . f ; g 2 PB.n//:

(note that this defines an inner product for the vector space of games: hv;wi D
1
2n

P
A�X v.A/w.A/). Accordingly, we define the associated (L2) norm by k f k D

ph f ; f i. The question is to find an orthonormal basis of PB.n/. It is easily seen that
the first basis (corresponding to the Dirac games) is orthogonal but not orthonormal,
while the second is even not orthogonal. An orthonormal basis exists, denoted by
fwTgT�Œn�, with

wT.x/ D
Y

i2T

.2xi � 1/ .T � Œn�/:

We call any wT a Walsh function, with some abuse (Remark 2.70). The set function
corresponding to wT is denoted by the same symbol wT , and is expressed as

wT .S/ D .�1/jTnSj .S � Œn�/: (2.64)

We call such set functions Walsh set functions. These are not games because
wT.¿/ ¤ 0.

Theorem 2.69 The family fwTgT�Œn� is an orthonormal basis of PB.n/.

Proof We start by proving that the Walsh functions are orthonormal; i.e.,
hwS;wT i D 1 if S D T, and 0 otherwise. Setting zi D 2xi � 1 for i D 1; : : : ; n, we
have wS.z/ D Q

i2S zi, denoted for simplicity by zS, for any z 2 f�1; 1gŒn�. Then we
find

hwS;wTi D 1

2n

X

z2f�1;1gŒn�
zSzT D 1

2n

X

z2f�1;1gŒn�
zS�T :

If S D T, we get hwS;wTi D 1, owing to the convention
Q

i2¿ zi D 1. If S ¤ T, we
have:

X

z2f�1;1gŒn�
zS�T D 2jŒn�n.S�T/j X

z2f�1;1gS�T

zS�T D 2jŒn�n.S�T/j.1 � 1/jS�Tj D 0:
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Now, because the Walsh functions are pairwise orthogonal, they form an inde-
pendent subset of PB.n/. Since there are 2n D dimPB.n/ Walsh functions, this
independent set must be a basis.

ut
Let us express any pseudo-Boolean function f in this basis. Setting zi D 2xi �1 2

f�1;C1g, the Walsh functions reduce to monomials
Q

i zi. From xi D 1
2
zi C 1

2
, we

get

f .z/ D
X

T�Œn�
aT

Y

i2T

1

2
.zi C 1/

D
X

T�Œn�

aT

2jTj
�X

S�T

Y

i2S

zi

�

D
X

T�Œn�

�X

S	T

aS

2jSj
�Y

i2T

zi:

In summary, a pseudo-Boolean function reads as follows in the basis of Walsh
functions:

f .x/ D
X

T�Œn�

�X

S	T

aS

2jSj
�

wT.x/ D
X

T�Œn�

1

2jTj If
B.T/wT.x/; (2.65)

using (2.47). Note that up to a factor, the coordinates in the basis of the Walsh
functions are merely the Banzhaf interaction coefficients. We call this expression
the Walsh representation of f .

Remark 2.70

(i) The basis wT is closely related to the Walsh functions [342], well-known in
signal processing (Hurst et al. [199]). The original Walsh functions are defined
as follows, for any k 2 N0 and any x 2 Œ0; 1�:

Wk.x/ D .�1/
P

1

jD0 kjxjC1 ; (2.66)

with k D k0Ck12Ck222C� � � km2
m, ki 2 f0; 1g for all i, and x D x12�1Cx22�2C

x32�3 C � � � , xi 2 f0; 1g for all i, the binary representations of k and x. They
form an orthonormal basis of the set of square integrable functions on Œ0; 1�.
The connection with our Walsh functions is that the latter have a discretized
domain 0; 1

2n ;
2
2n ;

3
2n ; : : : ;

2n�1
2n of 2n points, corresponding to the 2n subsets of

Œn�. More precisely, wS.x/ corresponds to Wk.x0/ such that S and k have same
binary coding (see Sect. 2.15.1), and x0

1 D 1 � x1; : : : ; x0
n D 1 � xn, x0

j D 0

for j > n. For illustration, we take n D 3, and represent graphically the Walsh
functions on Fig. 2.2. The Walsh functions are also closely related to the Fourier
transform, see Sect. 2.16.2.
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w123(x)

w23(x)

w13(x)

w3(x)

w12(x)

w2(x)

w1(x)

w∅(x)

x =

⎛
⎝
1
1
1

⎞
⎠

⎛
⎝
1
1
0

⎞
⎠

⎛
⎝
1
0
1

⎞
⎠

⎛
⎝
1
0
0

⎞
⎠

⎛
⎝
0
1
1

⎞
⎠

⎛
⎝
0
1
0

⎞
⎠

⎛
⎝
0
0
1

⎞
⎠

⎛
⎝
0
0
0

⎞
⎠

+1

+1

−1

−1

Fig. 2.2 The Walsh functions wT .x/ for n D 3

(ii) Some authors have proposed to use a more general inner product (Ding
et al. [90, 91] and Marichal and Mathonet [232]), starting from probabilities
p1; : : : ; pn, where pi indicates the probability that x 2 f0; 1gn has coordinate
xi D 1. Considering that coordinates are statistically independent, this induces
a probability distribution over f0; 1gn given by

p.x/ D
Y

i2Œn�
pxi

i .1 � pi/
1�xi :

Assuming that pi > 0 for all i 2 Œn�, the inner product is defined by

h f ; gi D
X

x2f0;1gn

p.x/f .x/g.x/: (2.67)

Note that our previous inner product is recovered with pi D 1
2

for all i 2 Œn�
(uniform distribution on the hypercube). It is shown in Ding et al. [91] that there
still exists an orthonormal basis of pseudo-Boolean functions, given by:

wp
T .x/ D

Y

i2T

xi � pi
p

pi.1 � pi/
:

}
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2.16.2 The Fourier Transform

Let us introduce another orthonormal basis of pseudo-Boolean functions, through
the parity functions. For any subset S � Œn�, the parity function associated to S is
the function

�S.x/ D .�1/1>

S x D .�1/
P

i2S xi .x 2 f0; 1gn/; (2.68)

where 1>
S x is the inner product between the two vectors 1S; x. The parity function

outputs 1 if the number of variables in S having value 1 is even, and �1 if it is odd.
In terms of set functions, the parity function reads

�S.T/ D .�1/jS\Tj .T 2 2Œn�/:

An important remark is that the parity functions are, up to a recoding, identical
to the Walsh functions: consider the coding function " defined by ".1/ D 0 and
".�1/ D 1. Recall that the Walsh functions are monomials:

wS.z/ D
Y

i2S

zi .z 2 f�1;C1gn/:

Then it holds that wS.z/ D �S ı ".z/. Indeed,

wS.z/ D
Y

i2S

zi D .�1/
P

i2S ".zi/ D �S.".z//:

[see also Remark 2.70(i)] It follows that the parity functions inherit the properties of
the Walsh functions (and vice versa), in particular, f�SgS�Œn� is an orthonormal basis
of PB.n/: h�S; �Ti D 1 if and only if S D T, and 0 otherwise. As other interesting
property, we have, as the readers can check,

�S.x ˚ y/ D �S.x/�S.y/ .x; y 2 f0; 1gn/; (2.69)

where ˚ denotes the coordinatewise binary addition:

1˚ 1 D 0 D 0˚ 0; 1˚ 0 D 0˚ 1 D 1:

Following the tradition, let us denote by bf .S/, S � Œn�, the coordinates of a
pseudo-Boolean function f in the basis of parity functions:

f D
X

S�Œn�
bf .S/�S: (2.70)
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The basis being orthonormal, it follows from (2.70) thatbf .S/ is simply given by

bf .S/ D h f ; �Si D 1

2n

X

x2f0;1gn

.�1/1>

S xf .x/ .S � Œn�/; (2.71)

or, in terms of set functions,

b
.S/ D 1

2n

X

T�Œn�
.�1/jS\Tj
.T/ .S � Œn�/: (2.72)

The set of coordinates fbf .S/gS�Œn� is the Fourier transform8 or Fourier spectrum of
f . We may also call the basis of parity functions the Fourier basis.

Note that Formula (2.70) gives the inverse Fourier transform; i.e., how to recover
f frombf .

We gather in the next theorem the most basic properties of the Fourier transform.
We first introduce some notation and definitions. Considering x 2 f0; 1gn as a
random variable with uniform distribution, the expected value and the variance of a
pseudo-Boolean function f are

EŒ f � D 1

2n

X

x2f0;1gn

f .x/I VarŒ f � D E

. f � EŒ f �/2

� D EŒ f 2� � E
2Œ f �:

Next, given two pseudo-Boolean functions f ; g, their convolution product f � g is a
pseudo-Boolean function defined by

. f � g/.x/ D 1

2n

X

y2f0;1gn

f .x ˚ y/g.y/ .x 2 f0; 1gn/: (2.73)

Theorem 2.71 Let f ; g 2 PB.n/. The following holds.

(i) f .0/ D
X

S�Œn�
bf .S/;

(ii) bf .¿/ D EŒ f �;
(iii) (Parseval’s identity) k f k2 D P

S�Œn�bf 2.S/;
(iv)

X

S22Œn�nf¿g
bf 2.S/ D VarŒ f �;

(v) f is constant if and only ifbf .S/ D 0 for all S ¤ ¿;
(vi) 2. f � g/.S/ Dbf .S/bg.S/ for all S 2 2Œn�.

8The Fourier transform indeed induces a transformation or transform in the sense of Sect. 2.11,
which to any set function 
 maps another set functionb
. It is linear and invertible (Sect. 2.17.1).
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Proof (i) and (ii) are obvious.
(iii) By orthonormality of the Fourier basis,

k f k2 D h f ; f i D
X

S�Œn�
bf .S/

X

T�Œn�
bf .T/h�S; �Ti D

X

S�Œn�
bf 2.S/:

(iv) Immediate by definition of the variance, (ii) and (iii).
(v) Supposing f constant and using the set function notation, it suffices to show

that
P

T�Œn�.�1/jS\Tj D 0 for every nonempty S. We have, for S ¤ ¿

X

T�Œn�
.�1/jS\Tj D

X

K�Œn�nS

X

L�S

.�1/jLj D 0

by applying Lemma 1.1(i). The reverse implication comes from (iv).
(vi) We have by (2.71)

bf � g.S/ D 1

2n

X

x

. f � g/.x/�S.x/

D 1

22n

X

x

X

y

f .x ˚ y/g.y/�S.x/

D 1

2n

X

y

g.y/�S.y/
� 1

2n

X

x

f .x ˚ y/�S.x ˚ y/
�

Dbf .S/bg.S/;

where we have used (2.69) in the third equality. ut
Finally, we establish the relation between the Fourier, Möbius and Banzhaf

transforms [176]. Taking any set function 
, we have

b
.S/ D 1

2n

X

T�Œn�
.�1/jS\Tj
.T/ D 1

2n

X

T�Œn�
.�1/jS\Tj X

K�T

m
 .K/

D 1

2n

X

K�Œn�
m
.K/

X

T	K

.�1/jS\Tj:
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Now,

X

T�K

.�1/jS\Tj D .�1/jK\Sj2n�jK[Sj C .�1/jK\SjC12n�jK[Sj

 
jS n Kj
1

!

C

.�1/jK\SjC22n�jK[Sj

 
jS n Kj
2

!

C � � � C .�1/jSj2n�jK[Sj

D .�1/jK\Sj2n�jK[Sj

�
1 �

 
jS n Kj
1

!

C
 

jS n Kj
2

!

C � � � C .�1/jSnKj

�

„ ƒ‚ …
D0 except if jSnKjD0

:

It follows that

b
.S/ D 1

2n

X

K	S

m
.K/.�1/jK\Sj2n�jK[Sj

D .�1/jSj X

K	S

1

2k
m
.K/: (2.74)

Now, using (2.47), we obtain

b
.S/ D
��1
2

�s
I
B.S/: (2.75)

Finally, from (2.75) and (2.48), we obtain

m
.S/ D .�2/s
X

T	S

b
.T/: (2.76)

Remark 2.72

(i) The name “Fourier transform” comes from the initial work of Fourier9

on the representation of periodic functions by trigonometric series (Fourier
series), later generalized to any integrable function (Sect. 1.3.11). The Fourier
transform of a function, viewed as a time function or signal, gives its frequency
representation, and is a fundamental tool in signal processing. Exactly the same
results as those given in Theorem 2.71 hold for the original Fourier transform,
for instance, a constant signal has a null spectrum for all frequencies, except

9Joseph Fourier (Auxerre, 1768 – Paris 1830) is a French mathematician and physicist. He created
the Royal University of Grenoble and he is especially known for his work on heat propagation,
where his famous trigonometric series were used.
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for frequency 0, the well-known Parseval10 identity says that the energy of
a signal in time and frequency domains is the same, and most importantly,
convolution of signals in time domain is transformed into their product in
frequency domain. It is also a particular case of the bilateral Laplace transform.

Note however that all these properties, except the last one on convolution,
are immediate consequences of the orthonormality of the basis, so that the
name “Fourier transform” for pseudo-Boolean functions is more an analogy
than an exact mathematical correspondence. This is common usage in theo-
retical computer sciences, however to the opinion of the author, this transform
should be rather called the Walsh transform, because the definition of the Walsh
function is an infinite version of the parity function used here, as a comparison
of (2.66) and (2.68) reveals.

(ii) As we have noted in Theorem 2.33(vi), the Möbius transform also satisfies (v).
The same property is valid for the interaction transform [Theorem 2.45(iv)]
and the Banzhaf interaction transform [Theorem 2.47(iv)].

(iii) The original definition of a convolution of two functions f ; g (often viewed as
signals; i.e., time functions) is [see (1.27)]

. f � g/.x/ D
Z

f .x � y/g.y/dy:

The counterpart for pseudo-Boolean functions proposed above is indeed very
close, because binary addition ˚ and binary subtraction � coincide: 1 � 1 D
0 D 0� 0, and 1� 0 D 1 D 0� 1.

(iv) We have seen that the Walsh functions on f�1;C1gn are identical to the Fourier
basis, up to a recoding. Another variant exists, where the normalization of the
inner product is 1=2n=2. Then with this normalization, the Fourier transform
(a.k.a. Hadamard transform) becomes its own inverse, and the Parseval identity
would read k f k D kbf k.

(v) The Fourier transform of pseudo-Boolean functions is a central tool in theoret-
ical computer sciences, with many applications (the readers should consult the
surveys by de Wolf and O’Donnell [73, 258, 259] and the references therein),
for instance, list decoding, learning, random parities, influence of variables,
threshold phenomena, and also social choice theory.

}

10Marc-Antoine Parseval des Chênes (1755 – 1836) is a French mathematician born in Rosières-
aux-Salines. It seems that in all his life he published only five articles. This shows, in our times
where bibliometrics exerts its tyranny, that it is not necessary to publish a lot to remain famous for
centuries!
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2.16.3 Approximations of a Fixed Degree

When dealing with polynomials, a natural question is the approximation of a given
polynomial by a polynomial of a fixed degree. Considering a pseudo-Boolean
function f , we would like to find a best approximation by a pseudo-Boolean function
f �
k of degree at most k, where the degree of a pseudo-Boolean function is the highest

degree of its monomials, and the degree of a monomial
Q

i2T xi is simply jTj. Let
us denote by PB6k.n/ the vector space of pseudo-Boolean functions of degree at
most k. Considering (2.63) and recalling Definition 2.50, we see that the above
approximation problem amounts to approximating a set function by an at most k-
additive set function.

The best approximation is defined with respect to the (normalized) Euclidean dis-
tance, which is the norm associated to the inner product introduced in Sect. 2.16.1;
i.e.:

d. f ; g/ D
v
u
u
t
1

2n

X

x2f0;1gn

. f .x/� g.x//2 D k f � gk

with k f k D ph f ; f i. Hence the solution of the approximation problem is simply
the orthogonal projection of f onto PB6k.n/, which can be very easily expressed
if one uses an orthonormal basis w.r.t the above inner product: it is just the set of
coordinates of f of degree at most k in this basis. From Sect. 2.16.1 we know that
the basis of Walsh functions is suitable for this. We obtain:

Theorem 2.73 Let f 2 PB.n/. The best approximation of f in PB6k.n/ is given by

f �
k .x/ D

X

T�Œn�
jTj6k

a.k/T

Y

i2T

xi;

with

a.k/T D aT C .�1/k�jTj X

S	T
jSj>k

 
jSj � jTj � 1

k � jTj

!
�1

2

�jSnTj
aS .T � N; jTj 6 k/:
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Proof By (2.65), the best approximation of degree at most k reads:

f �
k .x/ D

X

T�Œn�
jTj6k

�X

S	T

aS

2jSj
�

„ ƒ‚ …
ˇT

Y

i2T

.2xi � 1/

D
X

T�Œn�
jTj6k

ˇT

�X

S�T

.�1/jTnSj2jSj Y

i2S

xi

�

D
X

S�N
jSj6k

� X

T	S
jTj6k

.�1/jTnSj2jSjˇT

�

„ ƒ‚ …
�S

Y

i2S

xi:

We have

�S D
X

T	S
jTj6k

.�1/jTnSj2jSj�X

L	T

aL

2jLj
�

D
X

L	S

aL

2jLnSj
� X

T2ŒS;L�
jTj6k

.�1/jTnSj
�
:

From Lemma 1.1(i) and (iii), we get:

X

T2ŒS;L�
jTj6k

.�1/jTnSj D

8
ˆ̂
<

ˆ̂
:

1; if S D L

0; if S � L and jLj 6 k

.�1/k�jSj�jLnSj�1
k�jSj

�
; otherwise

which yields the desired result. ut
Remark 2.74

(i) This result was first established by Hammer and Holzman for k D 1 and k D 2

[190], then later for any k by Grabisch et al. [178].
(ii) A generalization of this result exists for the weighted distance built from the

weighted inner product w.r.t. probabilities p1; : : : ; pn [see Eq. (2.67)]. The best
approximation in this case has the following coefficients:

a.k/T D aT C .�1/k�jTj X

S	T
jSj>k

 
jSj � jTj � 1

k � jTj

!
� Y

i2SnT

pi

�
aS .T � N; jTj 6 k/:

(see Ding et al. [91], and Marichal and Mathonet [232]).

}
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An important fact is that the best approximation f �
k has the same Banzhaf

interaction transform as the original function (up to truncation, of course).

Theorem 2.75 Let f 2 PB.n/. The best approximation of f in PB6k.n/ satisfies

I
f �

k
B .S/ D If

B.S/ .S � Œn�; jSj 6 k/:

This was remarked by Marichal and Mathonet [232], who generalized this result to
the weighted distance.

Proof First remark that by (2.65), we have

If
B.S/ D 2sh f ;wSi:

Then we have for all S � Œn� such that jSj 6 k, I
f �

k
B .S/ D If

B.S/ if and only if
h f � f �

k ;wSi D 0, but this characterizes the projection of f onto the basis of Walsh
functions.11 ut

Another type of approximation is called faithful approximation by Hammer and
Holzman [190]. It consists in finding a function g 2 PB6k.n/ that minimizes the

11Direct proof using (2.47): For every S � Œn�, jSj 6 k, we have, denoting the cardinality of sets
L; T; : : : by corresponding small letters l; t; : : ::

I
f �

k
B .S/ D X

L�S
l6k

�1

2

�l�s
 

aL C .�1/k�l
X

T�L
t>k

 
t � l � 1

k � l

!
�1

2

�t�l
aT

!

D X

L�S
l6k

�1

2

�l�s
aL CX

L�S
l6k

�1

2

�l�s
.�1/k�l

X

T�L
t>k

 
t � l � 1

k � l

!
�1

2

�t�l
aT

D X

L�S
l6k

�1

2

�l�s
aL C X

T�S
t>k

�1

2

�t�s
aT

X

L2ŒS;T�
l6k

.�1/k�l

 
t � l � 1

k � l

!

:

It suffices to prove that the summation on L 2 ŒS; T� equals 1. We have

X

L2ŒS;T�
l6k

.�1/k�l

 
t � l � 1

k � l

!

D
kX

lDs

.�1/k�l

 
t � s

l � s

! 
t � l � 1

k � l

!

D
kX

lDs

.�1/k�l

 
t � s

k � s C 1

! 
k � s

l � s

!
k � s C 1

t � l

D .�1/k.k � s C 1/

 
t � s

k � s C 1

!
kX

lDs

.�1/l
 

k � s

l � s

!
1

t � l
„ ƒ‚ …

�

:
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Euclidean distance to f , under the constraints f .0/ D g.0/ and f .1/ D g.1/, where
0; 1 are the n-dimensional vectors .0; : : : ; 0/ and .1; : : : ; 1/. We mention here the
result found by Ding et al., without proof [91]. There is a unique such function g
whose coordinates fˇSgS�Œn� in the basis of Walsh functions are

ˇS D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

bS C
P

T�Œn�
jTj>k;jTj even

bT

D0.n; k/
; if jSj is even and jSj 6 k

bS C
P

T�Œn�
jTj>k;jTj odd

bT

D1.n; k/
; if jSj is odd and jSj 6 k

.S � Œn�/

where fbSgS�Œn�, are the coordinates of f in the basis of Walsh functions, and

D0.n; k/ D
X

06j6k
j even

 
n

j

!

; D1.n; k/ D
X

16j6k
j odd

 
n

j

!

:

Letting k D 1, it is possible (after some algebra. . . ) to recover the result from
Hammer and Holzman [190]: the best linear faithful approximation of f is the
function g�.x/ D f .0/CP

i2Œn� vixi, with

vi D
X

i2T

aT

2jTj�1 C 1

n

�
f .1/� f .0/�

X

T�Œn�

jTjaT

2jTj�1
�
:

Approximation of Degree 1: Approximation of a Game by an Additive
Game

The simplest possible approximation is to approximate a pseudo-Boolean function
(or a set function) on Œn� by a polynomial of degree 1. Let us consider a slightly more
restricted problem: approximating a game v by an additive game  , defined by a n-
dimensional vector  as  .S/ D P

i2S  i (with some abuse of notation). This is
a kind of faithful approximation in the above sense because v.¿/ D  .¿/ D 0,
however in general nothing is imposed on  .X/. This problem deserves some
interest, because it can be seen as an equivalent to the linear regression problem,
or, in cooperative game theory, to find a value (like the Shapley or Banzhaf value)

The summation � reads, letting l0 D l � s,

� D .�1/s
k�sX

l0D0

.�1/l0
 

k � s

l0

!
1

t � l0 � s
D .�1/k .k � s/Š.t � k � 1/Š

.t � s/Š

by applying Lemma 1.1(v). Therefore, the summation on L equals 1, and the proof is complete.
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so that the resulting additive game is as close as possible to the original game.
Similarly, in decision making, it amounts to finding a probability measure as close
as possible to the original capacity.

We know already from Theorem 2.75 (with k D 1) that the best approximation is
nothing other than the Banzhaf value of v; i.e., B.v/ D IvB.fig/ (originally shown
by Hammer and Holzman [190]). Another remarkable result is due to Charnes et
al. [45], who give the solution of the faithful approximation when the distance is
weighted with positive symmetric coefficients. In particular, this permits to find the
Shapley value as the best faithful approximation for a certain set of weights. We give
hereafter a more general result, where weights need not be positive nor symmetric
(Faigle and Grabisch [129]).

We consider the following optimization problem (expressed under the game
form):

min
2RX

X

S�X

˛S.v.S/� .S//2 subject to .X/ D v.X/; (2.77)

with the convention .S/ D P
i2S i, and ˛S 2 R for all S. The objective function

can be rewritten as

X

S�X

˛S

�
v2.S/C 2

X

fi;jg�S

ij � 2v.S/
X

i2S

i C
X

i2S

2i

�
:

Hence (2.77) amounts to minimizing the following quantity subject to .X/ D
v.X/:

X

i2X

2i

X

S3i

˛S C 2
X

fi;jg�X

ij

X

S	fi;jg
˛S � 2

X

i2X

i

X

S3i

v.S/˛S:

Then the optimization problem can be put into the standard quadratic form

min
2RX

>Q � 2c> subject to
X

i2X

i D v.X/; (2.78)

with Q a symmetric n � n matrix with component qij D P
S	fi;jg ˛S for i ¤ j,

qii D P
S3i ˛S, and the n-dimensional vector c with component ci D P

S3i v.S/˛S.
The constraint being an equality constraint and linear in , and supposing Q to be
positive semidefinite, we are exactly in the case described in Sect. 1.3.8: any optimal
solution satisfies the KKT conditions (1.23) in the n C 1 variables 1; : : : ; n; z:

�
Q 1
1> 0

��


z

	

D
�

c
v.X/

	

; or

�
Q � c D �z1
1> D v.X/;

(2.79)
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with 1> D .1; : : : ; 1/ 2 R
n. Clearly, 1> D v.X/ has a solution, therefore if Q is

positive definite, there is a unique optimal solution given by

�
�
z�
	

D
�

Q 1
1> 0

��1 �
c

v.X/

	

:

The explicit expression of the optimal solution can be obtained if the matrix Q is
sufficiently simple, for example, if all diagonal elements are identical (let us denote
them by q), as well as all off-diagonal elements (let us denote them by p). Let us call
regular such a matrix. It can be checked that if the coefficients ˛S are symmetric,
i.e., ˛S D ˛T DW ˛s whenever jSj D jTj D s, then Q is regular (this is however not
the only case). Indeed, one finds

qij D
(Pn

sD2
�n�2

s�2
�
˛s; if i ¤ j

Pn
sD1

�n�1
s�1
�
˛s; otherwise.

Lemma 2.76 Let Q be regular, with q D qii and p D qij for i ¤ j. Then Q is positive
definite if and only if q > p > 0.

Proof For any  2 R
X , we have, after some algebra

>Q D .q � p/
nX

iD1
2i C p2.X/:

Then >Q D 0 only for  D 0 is equivalent to q � p > 0 and p > 0. ut
For regular positive definite matrices, it is then easy to get the unique optimal
solution.

Theorem 2.77 If Q is regular with q D qii and p D qij for i ¤ j and satisfies the
condition q > p > 0, then the unique optimal solution � of (2.78) is:

�
i D 1

q � p

�
ci C .q � p/v.X/� C

n

�
;

with C D 1>c.

Proof Let us solve (2.79) under the conditions on Q. Note that

�z D qi C p
X

j¤i

j � ci D .q � p/i C pv.X/� ci .i D 1; : : : ; n/:

Summing over the i’s, we obtain, letting C D 1>c,

�nz D .q � p/v.X/C npv.X/� C
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and hence

�z� D .q � p/
v.X/

n
C pv.X/� C

n
:

Knowing z�, we immediately obtain the components of �:

�
i D �z� � pv.X/C ci

q � p
D 1

q � p

�
ci C .q � p/v.X/� C

n

�
:

ut
Now, supposing that the coefficients ˛S are symmetric, we find:

q � p D
nX

sD1

 
n � 1

s � 1

!

˛s �
nX

sD2

 
n � 2
s � 2

!

˛s

D ˛1 C
nX

sD2
˛s

  
n � 1

s � 1

!

�
 

n � 2

s � 2

!!

D
n�1X

sD1
˛s

 
n � 2

s � 1

!

: (2.80)

Substituting into �
i above yields exactly the solution given by Charnes et al. (also

shown in Ruiz et al. [280]). We note however that the result given in Theorem 2.77
is slightly more general, because the coefficients need not be positive. We find now
how to recover the Shapley value.

Theorem 2.78 (Charnes et al. [45]) The Shapley value is the unique optimal
solution of (2.78) when the coefficients ˛S are given by

˛S D 1
� n�2

jSj�1
� .¿ ¤ S � X/:

Proof Since the Shapley value and the optimal solution of (2.78) are linear over
games, it suffices to match them on any basis, for example, the identity games ıS,
S 2 2X n f¿g. Taking any ıS and supposing the coefficients ˛S to be symmetric, we
have

ci D
(
˛s; if i 2 S

0; otherwise

so that C D s˛s, and we obtain, for S ¤ X:

�
i D

(
˛s.n�s/
n.q�p/ ; if i 2 S

� s˛s
n.q�p/ ; otherwise;



108 2 Set Functions, Capacities and Games

and if S D X, �
i D 1=n for all i 2 X. On the other hand, we find for the Shapley

value:

Sh
i .ıS/ D

8
<

:

1

n.n�1
s�1/

; if i 2 S

� 1

n.n�1
s /
; otherwise.

Equating �
i and Sh

i .ıS/ for every i 2 X yields

˛s

q � p
D 1

s
�n�1

s

� .1 6 s 6 n � 1/: (2.81)

Letting ˛s D 1=
�n�2

s�1
�

immediately yields q � p D n � 1 by (2.80). Injecting q � p D
n � 1 in (2.81) shows that the proposed solution works. ut
As a second application of Theorem 2.77, let us find the best faithful approximation
with ˛S D 1 for every S � X. Using (2.80) we find that q � p D 2n�2,
hence Theorem 2.77 can be applied. We have ci D P

S3i v.S/ and therefore
C D P

S�X jSjv.S/. This yields

�
i D 1

n2n�2
�

n
X

S3i

v.S/C 2n�2v.X/�
X

S�X

jSjv.S/
�

D v.X/

n
C 1

n2n�2
�X

S3i

.n � jSj/v.S/�
X

S�Xni

jSjv.S/
�
:

Letting Bi.v/ D 1
2n�2

P
S�Xni v.S [ i/, an equivalent form is:

�
i D v.X/

n
C Bi.v/ � 1

n

X

j2X

Bj.v/: (2.82)

Remark 2.79 Recall that the best (unfaithful) approximation with ˛S D 1 8S leads
to the Banzhaf value. The best faithful approximation was proposed by Ruiz et al.
[279] under the name of least square prenucleolus, in the form (2.82). In [280], Ruiz
et al. consider the family of values obtained by a faithful least square approximation
and axiomatize it. }

2.16.4 Extensions of Pseudo-Boolean Functions

Considering any pseudo-Boolean function f .x/, x 2 f0; 1gn, one may let x vary over
Œ0; 1�n or Rn, in any of the expressions (2.62), (2.63) or (2.65). These polynomials
are extensions of the original pseudo-Boolean function f , and more generally, any
polynomial f on R

n coinciding with f on f0; 1gn is an extension of f .
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The Owen Extension

Consider the standard representation (2.62) of a pseudo-Boolean function f . Letting
x vary over Rn, we obtain the Owen extension of f , which we denote by f Ow:

f Ow.x/ D
X

A�Œn�
f .1A/

Y

i2A

xi

Y

i2Ac

.1 � xi/ .x 2 R
n/: (2.83)

Rearranging terms, it can be equivalently written into the Möbius representation:

f Ow.x/ D
X

T�Œn�
aT

Y

i2T

xi .x 2 R
n/:

We denote the set of all such polynomials by P.n/. It is a vector space.

Remark 2.80

(i) Since pseudo-Boolean functions bijectively correspond to set functions,
Eq. (2.83) gives the Owen extension of a set function. If the set function is
a game, note that its Owen extension is a multilinear polynomial, that is, linear
in each variable. Precisely, the multilinear extension of games was introduced
by Owen [261] as a way to extend a game on the hypercube Œ0; 1�n.

(ii) Usually, extensions are defined on Œ0; 1�n instead of Rn. However, as remarked
by Marinacci and Montrucchio [235], there is no need to restrict to Œ0; 1�n, and
moreover some interesting properties can be found when working over R

n.
They also show that f Ow is the least-degree Bernstein polynomial associated
to f .

}
Theorem 2.81 P.n/ is a 2n-dimensional vector space. The set of monomials
Q

i2T xi, T � Œn�, is a basis of P.n/, as well as the family of polynomials
Q

i2T xi
Q

i2Tc.1 � xi/, and the family of Walsh functions
Q

i2T.2xi � 1/, the latter
basis being orthonormal.

Proof Clearly, each P 2 P.n/ can be written in the form
P

T�Œn� aT
Q

i2T xi,
therefore it remains to prove uniqueness. We proceed by induction on the size of the
subsets T. For T D ¿, P.0/ D a¿, therefore a¿ is uniquely determined. Assume
next that all aT are determined, for all T such that jTj 6 k, and consider T with
jTj D k C 1. Since P.1T/ D P

S�T aS, we have

aT D P.1T/ �
X

S
T

aS:

Then by induction hypothesis, aT is uniquely determined. Because there are 2n

monomials
Q

i2T xi, the dimension of the basis is 2n.
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To prove that the polynomials
Q

i2T xi
Q

i2Tc.1 � xi/ form a basis, it suffices to
show that they are linearly independent. Suppose

P.x/ D
X

T�Œn�
˛T

Y

i2T

xi

Y

i2Tc

.1 � xi/ D 0 .x 2 R
n/:

Since P.1T/ D ˛T , we get ˛T D 0 for each T, so that the polynomials are linearly
independent.

For the Walsh functions, the statement is proved exactly like in Theorem 2.69.
ut

An important consequence of the theorem is that, as remarked by Owen [261], f Ow

is the unique multilinear extension of f when f is grounded.
The conversion formulas between the bases are the same as for PB.n/. Denoting

by aT ; ˛T ; ˇT the coefficients in the basis of monomials, of the polynomials
Q

i2T xi
Q

i2Tc.1�xi/, and of the Walsh functions respectively, we have that faTgT�Œn�
is the Möbius transform of f˛TgT�Œn�, and the coefficients ˇT are given by (2.65).

Example 2.82 Define nonnegative weights p1; : : : ; pn, not all null, and consider the

monotone game v defined by v.A/ D
�P

i2A pi

�2
, A � X. Writing

�P
i2A pi

�2 D
�P

i2Œn� pixi

�2
with x D 1A, and remarking that x2i D xi if xi D 0 or 1, we directly

obtain the expression in terms of monomials

f Ow
v .x/ D

X

i2Œn�
p2i xi C 2

X

fi;jg�Œn�
pipjxixj:

This shows that this is a 2-additive game, whose Möbius transform is equal to p2i
on the singleton fig, and 2pipj on the pair fi; jg. Therefore, it is a totally monotone
game. Its expression in the basis of Walsh functions is

f Ow
v .x/ D

X

i2Œn�

�p2i
2

C
X

j¤i

pipj

2

�
wfig.x/C

X

fi;jg�Œn�

pipj

2
wfi;jg.x/:

Note that if p1; : : : ; pn defines a probability distribution, then v is the square of
a probability measure, and by the above result it is a belief measure. Now, if all
weights are equal to 1, we find v.A/ D jAj2. Þ

The next lemma gives the partial derivatives of the Owen extension, and is useful
for showing subsequent theorems. Following our convention 1.1 in Sect. 1.1, we use
throughout this section the shorthand:

@s f

@xjS
.x/ D @s f

@xi1 � � � @xis

.x/
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for any function f of the variable x D .x1; : : : ; xn/ and any S � Œn�, with S D
fi1; : : : ; isg.

Lemma 2.83 Let K D fi1; : : : ; ikg � Œn�. The partial derivative of the Owen
extension of a set function 
 w.r.t. xi1 ; : : : ; xik is given by

@k f Ow



@xjK
.x/ D

X

A�Œn�nK

�K
.A/
Y

i2A

xi

Y

i2Œn�n.A[K/

.1 � xi/

D
X

A	K

m
.A/
Y

i2AnK

xi .x 2 R
n/; (2.84)

with m
 the Möbius transform of 
. In particular, for any A � Œn�,

@k f Ow



@xjK
.1A/ D �K f
.1A/ D �K
.A/: (2.85)

Proof By definitions of the partial derivative and of �K f ; �K
, it suffices to show
the result for K D fkg. We have:

@ f Ow



@xk
.x/ D

X

A�Œn�nk


.A [ k/
Y

i2A

xi

Y

i62A;i¤k

.1� xi/

�
X

A�Œn�nk


.A/
Y

i2A

xi

Y

i62A;i¤k

.1 � xi/

D
X

A�Œn�nk

.
.A [ k/ � 
.A//
Y

i2A

xi

Y

i62A;i¤k

.1� xi/;

the desired result. The second formula can be proved similarly. Now, for any A �
Œn�, A 63 k, we have clearly

@ f Ow



@xk
.1A/ D 
.A [ k/ � 
.A/ D �k
.A/. If A 3 k, we

have
@ f Ow



@xk
.1A/ D @ f Ow




@xk
.1Ank/ D 
.A/ � 
.A n k/. In any case, the partial derivative

of f Ow

 is equal to �k
.A/. ut

Theorem 2.84 Let v be a game on X, and consider its Owen extension. The
following statements hold.

(i) v > 0 if and only if f Ow
v .x/ > 0 for all x 2 Œ0; 1�n;

(ii) v is monotone if and only if for all k 2 Œn�,

@ f Ow
v

@xk
.x/ > 0 .x 2 Œ0; 1�n/I
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(iii) v is monotone and k-monotone for some 2 6 k 6 n if and only if for each set
L � Œn� such that 1 6 jLj 6 k,

@jLj f Ow
v

@xjL
.x/ > 0 .x 2 Œ0; 1�n/I

(iv) v is nonnegative and totally monotone if and only if f Ow
v .x/ > 0 for all x 2 R

nC.

Proof

(i) If v > 0, its Owen extension (2.83) has nonnegative coefficients. As
Q

i2A xi
Q

i2Ac.1 � xi/ > 0 on Œ0; 1�n, we deduce that f Ow
v .x/ > 0 on Œ0; 1�n.

The converse is obvious.
(ii) v is monotone if and only if v.A [ k/ � v.A/ > 0 for every A � Œn�. Due

to Lemma 2.83, this implies that @ f Ow
v

@xk
.x/ > 0 for all x 2 Œ0; 1�n. Conversely,

monotonicity of v is proved by applying nonnegativity of the partial derivative
at x D 1A, A � Œn� n fkg.

(iii) By Theorem 2.21(i), k-monotonicity is equivalent to �Lv.A/ > 0 for all
disjoint A;L and 2 6 jLj 6 k. From Lemma 2.83 and (ii), this implies that
@jLj f Ow

v

@xjL
.x/ > 0 for all x 2 Œ0; 1�n. Conversely, the nonnegativity of these partial

derivatives on the vertices of Œ0; 1�n implies k-monotonicity and monotonicity
by Theorem 2.21(i) and (ii).

(iv) (Marinacci and Montrucchio [235]) Writing f Ow
v .x/ D P

T�Œn� aT
Q

i2T xi and
invoking Theorem 2.33(v) shows that f Ow

v .x/ > 0 on R
nC. Conversely, suppose

f Ow
v > 0 and that there exists T � Œn� such that aT < 0. Consider the vector
˛1T with ˛ > 0. Then

f Ow
v .˛1T/ D aT˛

jTj C terms of lower degree:

Therefore, for ˛ large enough, we get f Ow
v .˛1T/ < 0, a contradiction.

ut
Remark 2.85 The above results (ii) and (iii) can be stated in a more precise way.
Monotonicity of v implies the nonnegativity of the partial derivatives on Œ0; 1�n. But
to infer monotonicity, we need only nonnegativity on the vertices of Œ0; 1�n. Another
way to infer monotonicity is to impose nonnegativity of the partial derivatives on
�0; 1Œn. Then by continuity of the Owen extension, nonnegativity holds also on the
vertices. The same remarks apply to k-monotonicity as well. }

The next result shows the connection with various transforms.
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Theorem 2.86 For any set function 
 and any S � Œn�, we have

m
.S/ D @s f Ow



@xjS
.0; 0; : : : ; 0/ (2.86)

Lm
.S/ D @s f Ow



@xjS
.1; 1; : : : ; 1/ (2.87)

I
B.S/ D @s f Ow



@xjS

�1

2
;
1

2
; : : : ;

1

2

�
(2.88)

I
B.S/ D
Z

Œ0;1�n

@s f Ow



@xjS
.x/ dx (2.89)

I
.S/ D
Z 1

0

@s f Ow



@xjS
.x; x; : : : ; x/ dx: (2.90)

Proof Since by (2.85)
@s f Ow




@xjS
.0; 0; : : : ; 0/ D �S
.¿/ and

@s f Ow



@xjS
.1; 1; : : : ; 1/ D

�S
.X/, (2.86) and (2.87) are nothing but (2.15) and (2.40).
Equation (2.88) comes immediately from (2.47) and (2.84).
For the two last formulas, using Lemma 2.83 and (2.41), we find:

Z 1

0

@s f Ow



@xjS
.x; x; : : : ; x/ dx D

X

T	S

m
.T/
Z 1

0

xt�s D
X

T	S

m
.T/
1

t � s C 1
D I
.S/;

with s D jSj; t D jTj. Using (2.47), we find now

Z

Œ0;1�n

@s f Ow



@xjS
.x/ dx D

X

T	S

m
.T/
Z

Œ0;1�n

Y

i2TnS

xi dx

D
X

T	S

m
.T/
�1

2

�t�s D I
B.S/:

ut
Remark 2.87 These results show that the interaction transform is the integral of the
partial derivative on the diagonal of the hypercube, while the Banzhaf interaction is
the integral over the whole hypercube. They were proved by Grabisch et al. [178].
Owen in his seminal paper [261] proved (2.90) for jSj D 1; i.e., for the Shapley
value. }.
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Based on the foregoing theorem, the Taylor expansion of the Owen extension is
useful to derive conversion formulas between some transforms [178]. Recall that the
Taylor expansion of a real-valued function f of several variables x1; : : : ; xd at point
a D .a1; : : : ; ad/ is given by:

T.x/ D f .a/C
dX

jD1
.xj � aj/

@ f

@xj
.a/C 1

2Š

dX

jD1

dX

kD1
.xj � aj/.xk � ak/

@2 f

@xj@xk
.a/

C 1

3Š

dX

jD1

dX

kD1

dX

`D1
.xj � aj/.xk � ak/.x` � a`/

@3 f

@xj@xk@x`
.a/C � � �

Because the Owen extension is a multilinear function of n variables, its Taylor
expansion at any point y 2 Œ0; 1�n is exact and reduces to:

f Ow.x/ D
X

T�Œn�

Y

i2T

.xi � yi/
@t f Ow

@xjT
.y/ .x 2 Œ0; 1�n/: (2.91)

Taking x D 1S and y D .˛; : : : ; ˛/, we obtain, for f Ow

 :


.S/ D
X

T�Œn�

Y

i2T

.1S.i/ � ˛/@
t f Ow



@xjT
.˛; : : : ; ˛/ .˛ 2 Œ0; 1�; S � Œn�/: (2.92)

By Theorem 2.86, letting ˛ D 0, 1 and 1
2

in (2.92) gives the conversion formulas

respectively from m
 , Lm
 , I
B to 
, which we know already from Sect. 2.12. Now, by
successive derivations of (2.91), we obtain

@s f Ow

@xjS
.x/ D

X

T	S

Y

i2TnS

.xi � yi/
@t f Ow

@xjT
.y/ .x; y 2 Œ0; 1�n; S � Œn�/:

In particular, if x; y are constant vectors we obtain

@s f Ow



@xjS
.˛; : : : ; ˛/ D

X

T	S

.˛ � ˇ/t�s
@t f Ow




@xjT
.ˇ; : : : ; ˇ/ .˛; ˇ 2 Œ0; 1�; S � Œn�/:

(2.93)
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Again by Theorem 2.86, letting ˛ and ˇ be 0, 1 or 1
2

in (2.93) gives the conversion
formulas between m, Lm and IB, in particular:

Lm
.S/ D
X

T	S

�1

2

�t�s
I
B.T/

I
B.S/ D
X

T	S

�
� 1

2

�t�s Lm
.T/:

Now, combining (2.90) with (2.93), we obtain

I
.S/ D
X

T	S

 Z 1

0

.˛ � ˇ/t�sd˛

!
@t f Ow




@xjT
.ˇ; : : : ; ˇ/ (2.94)

D
X

T	S

.1 � ˇ/t�sC1 � .�ˇ/t�sC1

t � s C 1

@t f Ow



@xjT
.ˇ; : : : ; ˇ/ (2.95)

for any ˇ 2 Œ0; 1� and S � Œn�. Replacing ˇ by 0, 1, and 1
2
, we obtain the conversion

formulas from m; Lm; IB to I, in particular:

I
.S/ D
X

T	S

.1=2/t�sC1 � .�1=2/t�sC1

t � s C 1
I
B.T/ D

X

T	S

1C .�1/t�s

2t�sC1.t � s C 1/
I
B.T/:

The following result is helpful to find the converse formula.

Lemma 2.88 (Grabisch et al. [178]) For any set function 
,

@s f Ow



@xjS
.˛; : : : ; ˛/ D

X

T	S

Bt�s.˛/I

 .T/ .˛ 2 Œ0; 1�; S � Œn�/:

Proof We have

X

T	S

Bt�s.˛/I

 .T/ D

X

T	S

Bt�s.˛/
X

K	T

1

k � t C 1
m
.K/ .by (2.41)/

D
X

K	S

m
.K/
X

T2ŒS;K�
Bt�s.˛/

1

k � t C 1

D
X

K	S

m
.K/˛k�s .by Lemma 1.3/

D @s f Ow



@xjS
.˛; : : : ; ˛/ .by Lemma 2.83/:

ut
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Letting ˛ D 1
2

in the foregoing lemma yields, using (1.7):

I
B.S/ D
X

T	S

� 1

2t�s�1 � 1
�

Bt�sI

.T/:

The Lovász Extension

Consider now the Möbius representation of a pseudo-Boolean function f :

f .x/ D
X

T�Œn�
aT

Y

i2T

xi .x 2 f0; 1gn/:

Letting x vary overRn gives the Owen extension, as we have seen. However, nothing
prevents us to replace the product operator by any other operator coinciding with the
product on f0; 1gn. A simple example is the minimum operator. Doing so, we obtain
the Lovász extension f Lo of f :

f Lo.x/ D
X

T�Œn�
aT

^

i2T

xi .x 2 R
nC/: (2.96)

Remark 2.89 In his 1983’s paper [226], Lovász considered the problem of max-
imizing a linear function c � x over the core (see Chap. 3) of a supermodular set
function f .12 Lovász remarked that the optimal solution Of .c/ was an extension of f
on R

nC. The formula he gaves was not the above one, but an equivalent form. Later,
Singer [307] proved that the Lovász extension is the unique affine function that
interpolates f at the n C 1 vertices of each simplex Œ0; 1�n� D fx 2 Œ0; 1�n W x�.1/ 6
x�.2/ 6 � � � 6 x�.n/g, for all permutations � on Œn�. These simplices are called the
canonical simplices of the unit hypercube. Later, Marichal [227, 230] remarked that
the Lovász extension was the Choquet integral, which is introduced in Chap. 4. }
As for the Owen extension, we write f Lo

v to mean that it is the Lovász extension of
the game v.

Since the Lovász extension is a sum of minima, it is not differentiable, and unlike
the Owen extension, one cannot compute its partial derivatives. Instead, we extend
the discrete derivative�S f Lo

v to R
nC in the following way:

�S f Lo
v .x/ D

X

T	S

aT

^

i2TnS

xi .x 2 R
nC/ (2.97)

12Originally in the paper, the dual version of the core of a submodular set function was considered,
which amounts to the same.
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(see Lemma 2.83, and replace
Q

i2TnS by
V

i2TnS as they coincide on f0; 1gn). Thanks
to this, we obtain the following result, showing that the interaction transform is the
integral of the derivative of the Lovász extension.

Theorem 2.90 (Grabisch et al. [178]) For any game v and any S � Œn�, we have

Iv.S/ D
Z

Œ0;1�n
�S f Lo

v .x/ dx:

Proof Using Lemma 1.2, (2.41) and (2.97), we find

Z

Œ0;1�n
�S f Lo

v .x/ dx D
X

T	S

aT

Z

Œ0;1�n

^

i2TnS

xi dx D
X

T	S

mv.T/
1

t � s C 1
D Iv.S/:

ut

2.17 Transforms, Bases and the Inverse Problem

2.17.1 Transforms and Bases

We consider the vector space R2
X

of set functions (of course, similar considerations
can be done for the set of games: see Remark 2.92). So far, we have introduced
several bases (unanimity games, Walsh functions, etc.), and studied in depth
invertible linear transforms (see Sect. 2.12), separately. However, it is an obvious
fact from linear algebra that these two topics are the two faces of the same medal:
any basis induces a linear invertible transform, and vice versa. As a curious matter of
fact, it seems than no one has taken advantage of this duality. The next result gives
the explicit correspondence (we recall that ıS denotes the Dirac game or identity
game).

Lemma 2.91 (Duality between bases and transforms) (Faigle and Grabisch
[131]) For every basis fbSgS22X of R

2X
, there exists a unique linear invertible

transform ‰ such that for any 
 2 R
2X

,


 D
X

S22X

‰
.S/bS; (2.98)

whose inverse ‰�1 is given by 
 7! .‰�1/
 D P
T22X 
.T/bT .

Conversely, to any transform ‰ corresponds a unique basis fbSgS22X such that
(2.98) holds, given by bS D .‰�1/ıS .

Proof The above formulas simply express the change of basis. Considering the
above functions and transforms as (column) vectors and matrices, the representation
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of 
 in the basis fbSgS22X , that is, 
 D P
S wSbS, can be rewritten as 
 D Bw, or

w D B�1
, and the mapping 
 7! w can be seen as a linear invertible transform,
with matrix representation B�1. ut

Let us apply this result to all bases and transforms introduced so far, together
with a new one.

(i) The Möbius transform: the associated basis is given by bS D .m�1/ıS , for any
S 2 2X . From (2.16) we get

.m�1/
.T/ D
X

B�T


.B/;

yielding bS.T/ D P
B�T ıS.B/, which is equal to 1 if and only if T � S,

and 0 otherwise. We recover the fact that the associated basis is the basis of
unanimity games, with the additional set function u¿.S/ D 1 for all S 2 2X

(Sect. 2.15.1).
(ii) The co-Möbius transform: proceeding similarly, we have from (2.28)

. Lm�1/
.S/ D
X

T�XnS

.�1/jTj
.T/;

yielding the associated basis fLuTgT22X :

LuT.S/ D
X

B�XnS

.�1/jBjıT.B/ D
�
.�1/jTj if S \ T D ¿
0 otherwise:

(2.99)

(iii) The basis of conjugate unanimity games: we recall that the conjugate
unanimity games are defined by

uT.S/ D 1 � uT.S
c/ D

(
1; if S \ T ¤ ¿
0; otherwise.

.S � X/

(Sect. 2.15.1). We have already established in Sect. 2.15.1 the coordinates of
a game in this basis [see (2.52)]. The induced transform U is then

U


.S/ D m
.S/ D .�1/jSjC1X

T	S

m
.T/ D .�1/jSjC1 Lm
.S/;

where we have used (2.39) for the last equality. Finally, we get from (2.27)

U


.S/ D .�1/jSjC1 X

T	XnS

.�1/n�jTj
.T/:
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The inverse transform is directly obtained from Lemma 2.91:

.U
�1
/
.S/ D

X

T\S¤¿

.T/:

(iv) The (Shapley) interaction transform: From (2.43) the inverse transform is
given by

.I�1/
.S/ D
X

K�X

ˇ
jKj
jS\Kj
.K/;

with coefficients ˇl
k given in (2.44), yielding the corresponding basis

bI
T.S/ D ˇ

jTj
jT\Sj .S;T 2 2X/: (2.100)

(v) The Banzhaf interaction transform: From (2.31), we find the associated basis:

bIB
T .S/ D

X

K�X

�1

2

�k
.�1/jKnSjıT.K/ D

�1

2

�jTj
.�1/jTnSj .S;T 2 2X/:

(2.101)

(vi) The Fourier transform: The transform 
 7! F
 (denoted byb
 in Sect. 2.16.2)
is defined by

F
.S/ D 1

2n

X

K�X

.�1/jS\Kj
.K/ (2.102)

with inverse given by (2.70)

.F�1/
.S/ D
X

K�X

.�1/jS\Kj
.K/:

The corresponding basis is therefore

bF
T.S/ D

X

K�X

.�1/jS\KjıT.K/ D .�1/jS\Tj .S;T 2 2X/: (2.103)

We recover as expected the Fourier basis, denoted by �T in Sect. 2.16.2.
(vii) The Walsh basis: We recall that this basis is defined by wT .S/ D .�1/jTnSj

[Eq. (2.64)]. Let us find the corresponding transform 
 7! W
 . By
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Lemma 2.91, the inverse transform is immediate:

.W�1/
.S/ D
X

T�X


.T/.�1/jTnSj:

The direct transform can be discerned by solving the linear system


.S/ D
X

T�X

W
 .T/.�1/jTnSj .S 2 2X/;

or by simply noticing that wT .S/ D 2jTjbIB
T .S/, which from


.S/ D
X

T�X

I
B.T/b
IB
T .S/ D

X

T�X

W
.T/wT .S/

yields the components of W
 as

W
.T/ D
�1

2

�jTj
I
B.T/ .T 2 2X/:

We recover Formula (2.65). Note that the Fourier and Walsh bases are related
as follows:

bF
T.S/ D bF

S .T/ D .�1/jS\Tj D .�1/jSn.XnT/j D wS.X n T/:

Also, from (2.75), we find

F
.S/ D .�1/sW
 .S/ .S 2 2X/: (2.104)

(viii) The Yokote basis13 [354, 355]: it is a basis of the set of games, which is
defined by

�T.S/ D
(
1; if jS \ Tj D 1

0; otherwise
.S 2 2X n ¿/: (2.105)

Any game v reads in this basis

v D
X

T22X n¿
Yv.T/�T (2.106)

where the coordinates Yv.S/ define the Yokote transform Y. We give now Yv

in terms of mv and v, as well as the inverse relations. We start with mv .

13Reference [354] contains a more general set of bases including this one.



2.17 Transforms, Bases and the Inverse Problem 121

From (2.106) we have

v.S/ D
X

TWjT\SjD1
Yv.T/;

hence by (2.15),

mv.S/ D
X

T�S

.�1/jSnTj X

KWjK\TjD1
Yv.K/

D
X

K\S¤¿
Yv.K/

X

T�S
jT\KjD1

.�1/jSnTj

D
X

K\S¤¿
Yv.K/

X

i2K\S

X

L�SnK

.�1/jSn.L[i/j

D
X

K\S¤¿
Yv.K/

X

i2K\S

.�1/jK\SjC1 X

L�SnK

.�1/j.SnK/nLj

„ ƒ‚ …
D0 except if SnKD¿

D
X

K	S

Yv.K/
X

i2K\S

.�1/jSjC1

hence finally

mv.S/ D jSj.�1/jSjC1X

K	S

Yv.K/ .¿ ¤ S � X/: (2.107)

Let us find the inverse relation. Putting 	.S/ D .�1/jSjC1

jSj mv.S/, and using the
relation between m and Lm in Table A.2 (	 and Y playing the rôle of Lm and m
respectively), we get

Yv.S/ D
X

K	S

.�1/jKnSj	.K/ D
X

K	S

.�1/jKnSjCjKjC1 1
jKjmv.K/;

which yields

Yv.S/ D .�1/jSjC1X

K	S

1

jKjmv.K/ .¿ ¤ S � X/: (2.108)

We remark that Yv.fig/ D Sh
i .v/, the Shapley value of v [see Remark 2.43,

Eq. (2.32)].
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Let us find the expression of Yv in terms of v. Using (2.108) and (2.15),
we find

Yv.S/ D .�1/jSjC1X

K	S

1

jKj
X

L�K

.�1/jKnLjv.L/

D .�1/jSjC1X

L�X

v.L/
X

K	S[L

1

jKj.�1/
jKnLj

D .�1/jSjC1X

L�X

.�1/jSnLjv.L/
X

K	S[L

1

jKj .�1/
jKn.L[S/j:

Now, putting S [ L D T, we have

X

K	S[L

1

jKj.�1/
jKn.L[S/j D

X

K2ŒT;X�

1

jKj.�1/
jKnTj D

X

K2Œ¿;XnT�

1

jKj C jTj .�1/
jKj

D
n�tX

kD0

1

k C t
.�1/k

 
n � t

k

!

with t D jTj, k D jKj. Using Lemma 1.1(iv) we find

n�tX

kD0

1

k C t
.�1/k

 
n � t

k

!

D .n � t/Š.t � 1/Š
nŠ

:

Substituting in the above, we get

Yv.S/ D .�1/jSjC1X

L�X

.�1/jSnLjv.L/
.n � s � l/Š.s C l � 1/Š

nŠ

which finally gives

Yv.S/ D
X

L�X

.�1/jS\LjC1 .n � s � l/Š.s C l � 1/Š
nŠ

v.L/: (2.109)

Table A.1 in Appendix A summarizes all the foregoing results.

Remark 2.92 The above results can be easily adapted to the vector space of games,
even if most of the foregoing bases are not composed of games. Since for any game
v.¿/ D 0, given a basis fbSgS22X of the space of set functions, it can be turned into
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a basis of games fb0
SgS22Xnf¿g by letting

b0
S.T/ D

(
bS.T/; if T ¤ ¿
0; otherwise

.S 2 2X n f¿g/: (2.110)

}

2.17.2 The Inverse Problem

The duality between transforms and bases permits to easily solve the “inverse
problem,” well known in game theory: For a given game v 2 G.X/, find all games
v0 2 G.X/ with same Shapley value, or Banzhaf value, or any other linear value 
(see Remark 2.43 and Eqs. (2.32) and (2.33) for their definition); i.e., such that

.v/ D .v0/ or, equivalently, .v � v0/ D 0:

Hence, the solution of the problem amounts to finding the null space or kernel of
the value , viewed as a linear mapping:

ker./ D f
 2 R
2X j .
/ D 0g:

Kleinberg and Weiss [209] exhibited a basis of the kernel for the Shapley value.
Other solutions were given by Dragan [95], who solved this problem for the Shapley
value [93] and later for all semivalues14 [94] in a simpler way than Kleinberg and
Weiss, and more recently by Yokote et al. [355].

Lemma 2.91 provides an easy solution for the inverse problem if a transform that
extends the value in question is available. We illustrate the method with the Shapley
value Sh. Since the Shapley interaction transform 
 7! I
 extends Sh in the sense
that I
.fig/ D Sh

i .
/, we have


 D
X

S22X

I
.S/bI
S D

X

i2X

Sh
i .
/b

I
fig C

X

S22X

jSj¤1

I
.S/bI
S;

14A semivalue (Dubey et al. [97]) assigns to each game v a vector  .v/ defined by

 i.v/ D X

S�Xni

ps.v.S [ i/� v.S// .i 2 X/

where fpsgsD0;:::;jXj�1 is a probability distribution on the size of the sets, satisfying
P

jXj�1
jD0

�
jXj�1

s

�
ps D 1. If the distribution depends on i, then it is called a probabilistic value (Weber

[344]). The Shapley value is a particular case of semivalue.
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which implies


 2 ker.Sh/ ” 
 D
X

S22X

jSj¤1

I
.S/bI
S

i.e.,

ker.Sh/ D
n X

S22X

jSj¤1

�SbI
S j �S 2 R

o
: (2.111)

Example 2.93 Let us give an explicit form of the kernel for n D 3, using Table 2.2.
We obtain that any member 
 of the kernel has the form


.¿/ D �¿ C 1

6
.�12 C �13 C �23/


.1/ D �¿ � 1

3
�12 � 1

3
�13 C 1

6
�23 C 1

6
�123


.2/ D �¿ � 1

3
�12 C 1

6
�13 � 1

3
�23 C 1

6
�123


.3/ D �¿ C 1

6
�12 � 1

3
�13 � 1

3
�23 C 1

6
�123


.12/ D �¿ C 1

6
�12 � 1

3
�13 � 1

3
�23 � 1

6
�123


.13/ D �¿ � 1

3
�12 C 1

6
�13 � 1

3
�23 � 1

6
�123


.23/ D �¿ � 1

3
�12 � 1

3
�13 C 1

6
�23 � 1

6
�123


.123/ D �¿ C 1

6
.�12 C �13 C �23/;

where �¿; �12; �13; �23; �123 are arbitrary real constants.

This method was already proposed by the author in [163, Sect. 7], and applied to find
all k-additive capacities having the same Shapley value. A more general method for
finding the kernel of the Shapley value can be found in [131].

2.18 Inclusion-Exclusion Coverings

Set functions being exponentially complex in the size of X (defined to be n in this
section), it is important to find subfamilies that can be represented in a simpler way.
Additive games are extreme examples needing only n real values to be defined,
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while k-additive games and p-symmetric games are other examples. We have seen
in Sect. 2.13 that k-additivity is a natural way to generalize additivity. There exists
another natural way via partitions: take any partition � of X, and say that � is an
interadditive partition for a game v if for all sets A � X,

v.A/ D
X

P2�
v.A \ P/: (2.112)

For an additive game, any partition is interadditive, in particular the finest one (see
Sect. 1.3.2 for the definition of the poset of partitions). Conversely, if the finest
partition is interadditive, then v is an additive game.

If (2.112) holds, v can be represented via the restrictions of v to each P 2 �; i.e.,

v.A/ D
X

P2�
vP.A \ P/ .A � X/ (2.113)

with vP 2 G.P/, defined by vP.B/ D v.B/ for any B � P. Therefore, v needs only
P

P2�.2jPj � 1/ coefficients instead of 2n to be defined.
We may try to be more general and use coverings instead of partitions. A covering

C D fC1; : : : ;Ckg of X is a collection of nonempty subsets of X such that
Sk

iD1 Ci D
X. We denote by C.X/ the set of coverings of X. Then Eq. (2.112) does not make
sense any more because overlapping between sets may occur. It can be generalized
as follows. We say that C D fC1; : : : ;Ckg is an inclusion-exclusion covering for v if
for all A � X,

v.A/ D
X

I�Œk�
I¤¿

.�1/jIjC1v.
\

i2I

Ci \ A/: (2.114)

Similarities with the notions of k-monotone/alternating properties explain the name
[Remark 2.19(v)]. The set of inclusion-exclusion coverings for v on X is denoted by
IEC.v;X/.

Inclusion-exclusion coverings are intimately related to the Möbius transform.

Lemma 2.94 Let v be a game on X, which has no null set (see Definition 2.107
hereafter). Then M.v/ D fC � X W mv.C/ ¤ 0g is a covering of X, called the
Möbius covering for v.

Proof Assume that M.v/ is not a covering of X. Then there exists x 2 X such that
for all A 3 x, mv.A/ D 0. Consider any set B � X n fxg. Then

v.B [ fxg/ D
X

A�B[fxg
mv.A/ D

X

A�B

mv.A/ D v.B/;

proving that fxg is a null set, a contradiction. ut
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Theorem 2.95 Consider a game v on X such that M.v/ is a covering15 of X. Then
the Möbius covering M.v/ is an inclusion-exclusion covering for v.

Proof We denote by M.v/ D fC1; : : : ;Ckg the Möbius covering.
We show (2.114) for some A � X, that is

X

D2MA.v/

mv.D/ D v.A/ D
X

I�Œk�
I¤¿

.�1/jIjC1v.
\

i2I

Ci \ A/;

introducing MA.v/ D fC 2 M.v/ W C � Ag. We have

X

I�Œk�
I¤¿

.�1/jIjC1v.
\

i2I

Ci \ A/ D
X

I�Œk�
I¤¿

.�1/jIjC1
X

D�Ti2I Ci
D2MA.v/

mv.D/;

therefore we have to show that mv.D/ for each D 2 MA.v/ appears once and only
once in the right member. Let us introduce for each D 2 MA.v/ the collection

D.D/ D fC 2 M.v/ W C � Dg;

which is nonempty because D 2 D.D/. Put d D jD.D/j. The right member reads

X

I�Œk�
I¤¿

.�1/jIjC1
X

D�Ti2I Ci
D2MA.v/

mv.D/

D
X

D2MA.v/

mv.D/
� X

C2D.D/
1 �

X

C;C02D.D/
C¤C0

1C
X

C;C0 ;C002D.D/
C¤C0¤C00

1� � � �
�

D
X

D2MA.v/

mv.D/

  
d

1

!

�
 

d

2

!

C
 

d

3

!

� � � � C .�1/dC1
 

d

d

!!

D
X

D2MA.v/

mv.D/

by applying (1.1). ut
The Möbius covering is by no means the only inclusion-exclusion covering.

However, it plays a fundamental rôle because in a sense it permits to find all of
them. To this end, let us endow the set of coverings C.X/ with a preorder. Let C and
D be two coverings of X. We write C v D if for every C 2 C, there exists D 2 D
such that C � D. Note that v, although reflexive and transitive, is not a partial order

15By Lemma 2.94, a sufficient condition is that v has no null set.
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because it is not antisymmetric: consider jXj > 1 and C D fX; fxgg, D D fX; fygg
with x ¤ y. Then C v D and D v C both hold, although they are different.

There is a simple way to make v a partial order: it suffices to restrict to
irreducible coverings. The reduction of a covering C is the covering denoted by
Cı, which is the greatest antichain in C: Cı is obtained from C by removing any set
C 2 C such that there exists D 2 C that contains C. A covering C is irreducible if
Cı D C; i.e., if it is an antichain. With some abuse, we denote by Cı.X/ the set of
irreducible coverings of X. Now, .Cı.X/;v/ is a partially ordered set.

Consider again the Möbius covering M.v/ of some game v, and a covering
C 2 C.X/ such that M.v/ v C. It is easy to see by inspection of the proof of
Theorem 2.95 that C is also an inclusion-exclusion covering for v. Indeed, exactly
the same proof holds putting C D fC1; : : : ;Ckg and D.D/ D fC 2 C W C � Dg,
because D.D/ is never empty for each D 2 MA.v/ since M.v/ v C.

On the other hand, suppose there exist Ci;Cj 2 M.v/ such that Ci � Cj (say
i D k for simplicity). Then M.v/ n fCkg is still an inclusion-exclusion covering.
Again, the proof of Theorem 2.95 still works, replacing Œk� by Œk � 1� and letting
D.D/ D fC 2 M.v/ n fCkg W C � Dg, because D.D/ is never empty for each D 2
MA.v/. Of course, the same reasoning applies each time two sets are comparable
by inclusion in M.v/, however, the removal of a set Ci that would not be included
into another one in M.v/ is forbidden, because D.D/ would be empty for D D C.
In summary, we have shown:

Lemma 2.96 Consider a game v on X such that M.v/ is a covering. Then:

(i) Any covering C such that M.v/ v C is an inclusion-exclusion covering for v;
(ii) The irreducible covering Mı.v/ is an inclusion-exclusion covering for v.

Moreover, it is a smallest one.

We show another simple result.

Lemma 2.97 Consider a game v on X such that M.v/ is a covering, and an
inclusion-exclusion covering C for v. Then M.v/ v C.

Proof Let C D fC1; : : : ;Ckg. Consider A 2 M.v/ such that no C 2 C includes A.
Since C is an inclusion-exclusion covering, we have

X

B2M.v/
B�A

mv.B/ D v.A/ D
X

I�Œk�
I¤¿

.�1/jIjC1v.
\

i2I

Ci\A/ D
X

I�Œk�
I¤¿

.�1/jIjC1
X

B�Ti2I Ci
B2M.v/

B�A

mv.B/:

Observe that mv.A/ appears in the left member of the equation, but it cannot appear
in the right member because no Ci contains A. ut
Combining the above Lemma with Lemma 2.96(i), we conclude that a covering C
is a an inclusion-exclusion covering for v if and only if M.v/ v C. Therefore, the
irreducible covering Mı.v/ is the least element of IEC.v;X/. In summary, we have
shown:
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Theorem 2.98 (The set of inclusion-exclusion coverings) Consider a game v on
X such that M.v/ is a covering. Then

IEC.v;X/ D fC 2 C.X/ W Mı.v/ v Cg:

Consider C;D two coverings in C.X/, and introduce the operations t;u by

C u D D fC \ D W C 2 C;D 2 Dg
C t D D C [ D:

Clearly, C u D and C t D are coverings of X. Moreover, if C;D are inclusion-
exclusion coverings for v, then Theorem 2.98 shows that so are CuD and CtD. Let
us consider the poset .IECı.v;X/;v/, i.e., the set of irreducible inclusion-exclusion
coverings endowed with v, and introduce the internal operations

C uı D D fC \ D W C 2 C;D 2 Dgı

C tı D D .C [ D/ı:

Then it is easy to check that .IECı.v;X/;v/ is a distributive lattice, whose
supremum and infimum are tı and uı respectively.

After this detailed study of the set of inclusion-exclusion coverings, let us return
to our initial goal, that is, to find simpler representations, similar to (2.113). Of
course, the most economic representation should be based on the smallest irre-
ducible inclusion-exclusion covering Mı.v/. We partition M.v/ in subcollections
C.B/, B 2 Mı.v/, where each C.B/ contains the subsets of B. A tie occurs for every
C 2 M.v/ included in several B’s in Mı.v/, hence the partition is not unique.
Using the basis of unanimity games (see Sect. 2.15.1), we have for any A � X

v.A/ D
X

B2M.v/

mv.B/uB.A/

D
X

B2Mı.v/

X

C2C.B/
mv.C/uC.A/

D
X

B2Mı.v/

vB.A/ (2.115)

D
X

B2Mı.v/

vB.A \ B/; (2.116)

where vB is a game in G.B/ for each B 2 Mı.v/, defined by vB D
P

C2C.B/ mv.C/uC. Equation (2.116) provides the sought decomposition of v
in terms of simpler games, like (2.113). Note that the decomposition may not
be unique, because the partition of M.v/ is not unique in general, and that the
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complexity of the representation (number of coefficients needed) is jM.v/j, which
is no surprise.

Example 2.99 Consider X D f1; 2; 3; 4g and a game v on X with

M.v/ D f1; 3; 4; 12; 13; 14; 24; 34; 134g:

Clearly, M.v/ is a covering of X, therefore it is an inclusion-exclusion covering.
The smallest irreducible covering is Mı.v/ D f12; 24; 134g. The set IEC.v;X/ is
very large: it contains in particular all supercollections of Mı.v/ (there are 212 such
collections, including Mı.v/), plus all collections obtained from Mı.v/ (or any of
its supercollections) by replacing some of the sets by a superset, e.g., f123; 24; 134g
or f12; 234; 1234g.

The decomposition of v reads

v.A/ D v12.A \ 12/C v24.A \ 24/C v134.A \ 134/;

with

v12 D mv.1/u1 C mv.12/u12

v24 D mv.4/u4 C mv.24/u24

v134 D mv.3/u3 C mv.13/u13 C mv.14/u14 C mv.34/u34 C mv.134/u134:

If M.v/ contains X, then Mı.v/ reduces to fXg, and there is no decomposition
of v any more. The set IEC.v;X/ is then simply the set of collections in 2X n f¿g
containing X. There are 2.2

n�2/ such collections. Þ

Remark 2.100 The notion of inclusion-exclusion covering was introduced and stud-
ied in depth by Fujimoto, Murofushi and Sugeno in several papers [147, 148, 323].
Our presentation, however, is different and provides alternative proofs. }

2.19 Games on Set Systems

So far we have assumed that set functions were defined on 2X , with jXj < 1.
In many application domains, this assumption does not hold. Referring to the
interpretations of capacities given in Sect. 2.4, the two main domains of appli-
cation of capacities are the representation of uncertainty, and the representation
of power/worth of a group (cooperative game theory and social choice theory,
mainly). In the representation of uncertainty, capacities extend classical probability
measures, and in this field X is most often infinite, and probability measures are
defined on algebras or �-algebras, representing the set of possible events. The whole
corpus of classical measure theory deals with this framework (see, e.g., Halmos
[188]). In cooperative game theory too, games with infinitely many players have
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been considered (see the seminal work of Aumann and Shapley [11]), and in the
finite case, it is not uncommon to consider games with restricted cooperation,
that is, defined on a proper subset of 2X . Indeed, in many real situations, it is not
reasonable to assume that any coalition or group can form, and coalitions that can
actually form are called feasible. If X is a set of political parties, leftist and rightist
parties will never form a feasible coalition. Also, if some hierarchy exists among
players, feasible coalitions should correspond to sets including all subordinates, or
all superiors, depending on the interpretation of what a coalition represents. A last
example concerns games induced by a communication graph. A feasible coalition
is then a group of players who can communicate, in other terms, it corresponds to a
connected component of the graph.

In this section, we briefly address the infinite case (a complete treatment of set
functions on infinite sets would take a whole monograph, including in particular
classical measure theory (Halmos [188]), and nonclassical measure theory, as it can
be found in Denneberg [80], König [215], Pap [264, 265], Wang and Klir [343]),
and focus on the finite case. We will present several possible algebraic structures for
the subcollections of 2X.

We use the general term set system to denote the subcollection of 2X where set
functions are defined. Its precise definition is as follows.

Definition 2.101 A set system F on X is a subcollection of 2X containing ¿ and
such that

S
A2F A D X.

F endowed with set inclusion is therefore a poset, and ¿ is its least element (see
Sect. 1.3.2 for all definitions concerning posets and lattices). We recall that A �� B
means that A � B and there is no C such that A � C � B. Elements of F are feasible
sets. Definitions of set functions, games and capacities remain unchanged, only the
domain changes. In particular, a game v on .X;F/ is a mapping v W F � 2X ! R

satisfying v.¿/ D 0. We denote by G.X;F/ the set of games on F .16

2.19.1 Case Where X Is Arbitrary

(see Halmos [188, Chaps. 1 and 2])

Definition 2.102

(i) A nonempty subcollection F of 2X is an algebra on X if it is closed under finite
union and complementation:

A;B 2 F ) A [ B 2 F I A 2 F ) Ac 2 F I

16This notation implies that our previous notation G.X/ is a shorthand for G.X; 2X/. The omission of
the set system means that we consider the Boolean lattice 2X . We keep this convention throughout
the book.
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(ii) A nonempty subcollection R of 2X is a ring on X if it is closed under finite
union and set difference:

A;B 2 R ) A [ B 2 R and A n B 2 R:

Observe that:

(i) An algebra F is closed under finite \, and ¿;X 2 F . Hence an algebra is a set
system;

(ii) For a ring R, ¿ 2 R but X is not necessarily an element of R;
(iii) Every algebra is a ring; Every ring containing X is an algebra.

Definition 2.103 An algebraF is a �-algebra if it is closed under countable unions:

fAng � F )
1[

nD1
An 2 F :

Observe that a �-algebra is closed under countable intersection. A similar definition
exists for �-rings.

The set of finite subsets of X with their complement is an algebra, while the set
of countable subsets of X with their complement is a �-algebra.

We introduce some additional properties of set functions.

Definition 2.104 Let X be a nonempty subcollection of 2X and 
 be a set function
on .X;X /.

(i) 
 is �-additive if it satisfies



� 1[

nD1
An

�
D

1X

nD1

.An/

for any family fAng of pairwise disjoint sets in X such that
S1

nD1 An 2 X ;
(ii) 
 is continuous from below at a set A 2 X if for every countable family fAng

of sets in X such that A1 � A2 � � � � and lim
n!1 An D A; it holds

lim
n!1 
.An/ D 
.A/:


 is continuous from below if this holds for every A 2 X ;
(iii) 
 is continuous from above at a set A 2 X if for every countable family fAng of

sets in X such that A1 � A2 � � � � , 
.Am/ < 1 for some m, and
1\

nD1
An D A,

it holds

lim
n!1 
.An/ D 
.A/:
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 is continuous from above if this holds for every A 2 X ;
(iv) 
 is continuous if it is continuous from below and from above.

A measure17 m is a nonnegative �-additive set function on a ring, such that
m.¿/ D 0. Observe that by the latter property, every measure is finitely additive.
A measure m is finite if m.X/ < 1. A probability measure is a normalized measure.
A charge is a finitely additive nonnegative set function vanishing at the empty set.

The continuity properties and �-additivity are intimately related.

Theorem 2.105 Let 
 be a finite, nonnegative, and finitely additive set function on
a ring R.

(i) If 
 is either continuous from below at every A 2 X or continuous from above
at ¿, then 	 is �-additive, i.e., it is a (finite) measure;

(ii) If 	 is a measure on R, then it is continuous from below and continuous from
above.

Remark 2.106

(i) In probability theory, algebras and �-algebra are often called fields and �-
fields. �-additivity is also called countable additivity, and continuity from above
(respectively, below) is sometimes called outer (respectively, inner) continuity.

(ii) �-additivity and �-algebras are related to the famous Problem of Measure
(see Aliprantis and Border [7, pp. 372–373] for a more detailed discussion):
Given a set X, is there any probability measure defined on its power set so
that the probability of each singleton is 0? The motivation for this question is
that most often in applied sciences, to each point of the real line we assign
measure zero. Returning to the Problem of Measure, if X is countable, then
�-additivity entails that no such probability measure exists, therefore sets of
higher cardinality must be chosen. The Continuum Hypothesis asserts that
the smallest uncountable cardinality is the cardinality of the interval Œ0; 1�.
However, Banach and Kuratowski have shown that under this hypothesis, still
no probability measure can have measure zero on singletons. It follows that
in order to make probability measures satisfy this requirement, there are two
choices: either �-additivity is abandoned, or measurability of every set (that is,
F D 2X) is abandoned. The latter choice is the most common one, and leads to
�-algebras.

}

Null Sets

The notion of null sets is well known in classical measure theory, where it indicates
a set that cannot be “seen” by a (signed) measure, in the sense that its measure, as

17This is the classical definition. It generalizes the definition given in Sect. 2.2 for finite sets.
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well as the measure of all its subsets, is zero. For more general set functions, this
notion can be extended as follows.

Definition 2.107 (Murofushi and Sugeno [252]) Let v be a game on .X;F/, where
F is a set system. A set N 2 F is called a null set w.r.t. v if

v.A [ M/ D v.A/ .8M � N s.t. A [ M 2 F/; .8A 2 F/:

We give the main properties of null sets.

Theorem 2.108 Let v be a game on .X;F/. The following holds.

(i) The empty set is a null set;
(ii) If N is a null set, then v.N/ D 0;

(iii) If N is a null set, then every M � N, M 2 F is a null set;
(iv) If F is closed under finite unions, the finite union of null sets is a null set;
(v) If F is closed under countable unions and if v is continuous from below, the

countable union of null sets is a null set;
(vi) Assume F is an algebra. Then N is a null set if and only if v.A n M/ D v.A/

(equivalently, v.A�M/ D v.A/), for all M � N, M 2 F , and for all A 2 F ;
(vii) If v is monotone, N is a null set if and only if v.A [ N/ D v.A/ for all A 2 F ;

(viii) If v is additive, N is a null set if and only if v.M/ D 0 for every M � N,
M 2 F ;

(ix) If v is additive and nonnegative, N is null if and only if v.N/ D 0.

The proof of these statements is immediate from the definitions, and is left to the
readers. Statement (viii) shows that our definition of null sets is an extension of the
classical one.

Supermodular and Convex Games

The definition of supermodularity [see Definition 2.18(ii)] is left unchanged on alge-
bras, because they are closed under finite union and intersection. When X is infinite,
the equivalence between convexity and supermodularity [see Corollary 2.23(ii)] is
lost in general, even if F D 2X and X is countable. This is shown by the following
example (Fragnelli et al. [145]).

Example 2.109 Consider X D N and the game v defined by:

v.S/ D
(
1; if jSj D C1
0; otherwise:

It satisfies v.S [ i/ � v.S/ 6 v.T [ i/ � v.T/ for every S � T � N n fig, and
therefore v is convex. However, consider S and T being respectively the set of odd
and even numbers. Then v.S/ D v.T/ D v.S[T/ D 1, and v.S\T/ D 0. Therefore
v is not supermodular. Þ
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A remedy to this is to impose continuity from below.

Theorem 2.110 (Fragnelli [145]) Suppose X D N, F D 2N, and consider a game
v on .N; 2N/ that is continuous from below. Then v is convex if and only if it is
supermodular.

Proof Supermodularity implies as in the finite case convexity. Let us show the
converse. Take S;T � N, and let S n T D fs1; s2; s3; : : :g, with s1 < s2 < s3 < � � �
(any subset of N has a least element). By continuity from below, we have for r > 1

and sr 2 S n T:

v.S/� v.S \ T/ D
X

r>1

�
v..S \ T/ [ fs1; : : : ; srg/� v..S \ T/ [ fs1; : : : ; sr�1g/

�

v.S [ T/ � v.T/ D
X

r>1

�
v.T [ fs1; : : : ; srg/� v.T [ fs1; : : : ; sr�1g/

�
:

Since by convexity each term in the first summand is not larger than the correspond-
ing term in the second summand, it follows that v.S/Cv.T/ 6 v.S [T/Cv.S \T/.

ut

The Variation Norm of a Game

Aumann and Shapley [11] introduced the variation norm of a game v as follows:

kvk D sup
nX

iD1
jv.Ai/� v.Ai�1/j; (2.117)

where the supremum is taken over all finite chains ¿ D A0 � A1 � � � � � An D X in
F (this should not be confused with the composition norm kvkc; see Sect. 2.15.5).
Observe that if v is monotone, then kvk D v.X/. We denote by BV.F/ the set of
games on .X;F/ of bounded variation.

Aumann and Shapley showed that v 2 BV.F/ if and only if there exist two
capacities 	1; 	2 such that v D 	1 � 	2 and kvk D 	1.X/ C 	2.X/. See also
Murofushi et al. [255] for other properties of games of bounded variation.

2.19.2 Case Where X Is Finite

We assume here that jXj D n.
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Set Systems Closed Under Union and Intersection

In the finite case, algebras are set systems closed under union, intersection and
complementation. In many cases, in particular when studying the core (see Chap. 3),
complementation is not useful and it makes sense to consider set systems closed
under union and intersection. Such set systems endowed with inclusion are distribu-
tive lattices whose supremum and infimum are union and intersection respectively,
and are therefore isomorphic to the set of downsets of some poset P, which can
be considered to be a partition of X; i.e., the elements of P are the blocks of the
partition (see Sect. 1.3.2, in particular Theorem 1.4). Hence, there is no fundamental
difference between a set system generated by a partition of X or by X itself, because
in the former case, it simply amounts to considering that some elements of X are
glued together. For this reason, we always consider set systems closed under union
and intersection as generated by a partial order � on X. We write, according to our
notation of Sect. 1.3.2, F D O.X;�/, or simply F D O.X/. Note that this class of
set systems coincides with the class of distributive lattices of height n. By Birkhoff’s
theorem (Theorem 1.4), it is isomorphic to the class of posets on X. Figure 2.3
(reproduction of Fig. 1.3) gives an example of such a set system.

1

2

3

4

∅

1 3

123

3413

134

1234

Fig. 2.3 Left: a poset .X;�/ with X D f1; 2; 3; 4g. Right: the distributive lattice F D O.X;�/
generated by the poset

Weakly Union-Closed Set Systems

One way to get a more general class of set systems is to weaken the assumption on
union-closedness.

Definition 2.111 A set system F is weakly union-closed if A;B 2 F , A \ B ¤ ¿
implies A [ B 2 F .

Note that X does not necessarily belong to F . An important property of weakly
union-closed systems is that for any A � X, the family F.A/ D fF 2 F W F � Ag
has pairwise disjoint maximal elements.
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The basis of F is the collection of sets S in F that cannot be written as S D A[B,
with A;B 2 F , A;B ¤ S, A \ B ¤ ¿. All singletons and pairs of F are in the basis.
Clearly, knowing the basis permits to recover F . Figure 2.4 illustrates these notions.

∅

2

12

124

12345

1234 1345

5

35

345234

2345

∅

1 2 5

123 45

Fig. 2.4 Weakly union-closed systems on X D f1; 2; 3; 4; 5g. Elements of the basis are in red

Regular Set Systems

In a distributive lattice O.X/, all maximal chains from ¿ to X have length n.
This property, which does not characterize distributive lattices, can be taken as the
defining property of a larger class of set systems.

Definition 2.112 A set system F is regular if it contains X and all maximal chains
from ¿ to X have length n.

Equivalently, F is regular if and only if it contains X and for all A;B 2 F such that
A �� B, we have jB n Aj D 1.

It is easy to prove that any regular set system satisfies

(i) The one-point extension property: if A 2 F , A ¤ X, then 9i 2 X n A such that
A [ fig 2 F ;

(ii) The accessibility property: if A 2 F , A ¤ ¿, then 9i 2 A such that A n fig 2 F .

The converse is not true (Fig. 2.5).

Comparisons and Further Remarks

All the kinds of set systems presented above form distinct classes. It is apparent from
the definitions that distributive lattices of the form O.X/ are both regular set systems
and weakly union-closed systems. The precise situation of these three classes is
depicted in Fig. 2.6. One can find specimens of set systems in each part of this figure,
even if one restricts to weakly-union closed systems containing X (see Fig. 2.4 (left)
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∅

1

14

134

1234

2

23

123

Fig. 2.5 A set system satisfying one-point extension and accessibility, but that is not regular

for an example of a weakly union-closed system containing X but being not regular,
and Fig. 2.7).

regular set systems weakly union-closed systems

distributive lattices O(X)

Fig. 2.6 Relations between classes of set systems

Remark 2.113

(i) The idea of games with restricted cooperation seems to go back to Myerson
[256], inspired by Aumann and Drèze [10], and Owen [262]. In the latter,
a fixed partition of X is given (called a coalition structure), which serves
as a basis for defining games. No significant work seems to have emerged
on this topic till the paper of Faigle [128], who coined the term “restricted
cooperation.”

(ii) The idea to consider a set system generated by a poset on X is due to Faigle and
Kern [134]. This type of game was called game with precedence constraint.
Regular set systems were introduced in [197, 221], while weakly union-closed
sets systems were introduced by Faigle and Grabisch [130, 132], but already
studied under the name union stable systems by Algaba [3] (summarized in
Bilbao [22, Chap. 6], see also [4]).

(iii) Still many other kinds of set systems have been proposed and studied [mainly
convex geometries (Edelman and Jamison [121]), antimatroids (Dilworth [89]),
and augmenting systems (Bilbao [23])] in the context of cooperative game
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∅

1
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134

1234

234

23
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∅

1 2

13 14 23 24

123 134 124234

1234

Fig. 2.7 Left: regular but not weakly union-closed; Right: regular and weakly union-closed but
not a lattice, because 1 and 2 have no supremum

theory. We mention also set lattices, where the partial order is the inclusion
order, more general than set systems closed under union and intersection,
because _;^ of the lattice are not necessarily [;\, and they may be not
mutually distributive. We refer the readers to the comprehensive survey by the
author [170], the monograph of Bilbao [22], and various papers [5, 6, 21, 25–
27].

}

Supermodular and Convex Games

Generally speaking, the usual notion of supermodularity makes sense if F is a
lattice: we say that v is supermodular if

v.A _ B/C v.A ^ B/ > v.A/C v.B/ .A;B 2 F/ (2.118)

where _;^ are the supremum and infimum of F . For distributive lattices of the type
O.X;�/, supremum and infimum are set union and intersection, so that one recovers
the classical definition (same as for algebras). However, for weakly union-closed set
systems and regular set systems, the definition does not make sense in general.

The following adaptation for weakly union-closed systems was proposed by
Bilbao and Ordóñez [27], and Faigle et al. [132]: v on F is supermodular if

v.A [ B/C
X

F maximal in F.A\B/

v.F/ > v.A/C v.B/; (2.119)

for A;B 2 F , A\B ¤ ¿, where F.A\B/ D fF 2 F W F � A\Bg, and maximality
is meant w.r.t. set inclusion.
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The following result shows that for distributive lattices of the type O.X;�/,
convexity and supermodularity are equivalent [generalization of Corollary 2.23(ii)].

Theorem 2.114 Let F D O.X;�/. A game v on .X;F/ is supermodular if and
only if it is convex:

�iv.A/ 6 �iv.B/ .i 2 X;A � B � X n i;A [ i;B 2 F/: (2.120)

Proof (Grabisch and Sudhölter [182]) The “only if” part is easy and left to the
readers. Let us show that v.A[B/Cv.A\B/ > v.A/Cv.B/, assuming that AnB ¤ ¿
so that there exists i1; : : : ; ip 2 X, where p D jAnBj, such that .A\B/[fi1; : : : ; img 2
F for all m D 1; : : : ; p�1 and AnB D fi1; : : : ; ipg (it suffices that ik 6
 i` for k > `).
By (2.120),

v.A/ � v.A \ B/ D
pX

mD1
.v..A \ B/[ fi1; : : : ; img/� v..A \ B/[ fi1; : : : ; im�1g//

6
pX

mD1
.v.B [ fi1; : : : ; img/� v.B [ fi1; : : : ; im�1g//

D v.A [ B/� v.B/:

ut
Convexity and supermodularity are no longer equivalent on weakly union-closed
systems and on regular set systems that are set lattices, as shown by the next
examples.

Example 2.115 Consider the set system F on X D f1; 2; 3g given in Fig. 2.8, which
is weakly union-closed but not a distributive lattice. Observe that v on .X;F/ is

∅

1

12

123

23

Fig. 2.8 Example of weakly union-closed not being a distributive lattice

convex if and only if v.1/� v.¿/ 6 v.123/� v.23/. However, supermodularity as
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defined in (2.119) requires that

v.123/C v.¿/ > v.12/C v.23/

which cannot be deduced from the former condition. Þ

∅

1

13

123

23

2

Fig. 2.9 Example of regular set lattice not being distributive

Example 2.116 Consider the set system F on X D f1; 2; 3g given in Fig. 2.9, which
is a regular set lattice but not distributive. v on .X;F/ is convex if and only if

v.1/ 6 v.123/� v.23/

v.2/ 6 v.123/� v.13/:

However supermodularity requires in particular

v.123/ > v.1/C v.2/

which cannot be deduced from the former conditions. Þ

Modular and Additive Games

Let us suppose that F is closed under union and intersection, that is, of the type
O.X;�/. Recall that a modular game is both super- and submodular. Contrarily to
the case where F D 2X, it is not true in general that additivity is equivalent to
modularity, the latter being a stronger property. This is easy to see on an example.
Take n D 4 and F D f¿; 1; 3; 13; 34; 123; 134; 1234g (Fig. 2.3). Since the only
disjoint pairs are the singletons f1g, f3g, and f1g f3; 4g, additivity is equivalent to

v.f1g/C v.f3g/ D v.f1; 3g/
v.f1g/C v.f3; 4g/ D v.f1; 3; 4g/:
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However, modularity also requires for example

v.f1; 2; 3g/C v.f1; 3; 4g/ D v.f1; 2; 3; 4g/C v.f1; 3g/;

which cannot be deduced from the former conditions. However, if F is in addition
closed under complementation, then the two properties are equivalent.

Theorem 2.117 Let F be an algebra. Then v is modular if and only if v is additive.

Proof We need only to prove that additivity implies modularity. Take A;B 2 F . By
assumption, it follows that A[B, A\B, XnA, XnB, and therefore AnB D .XnB/\A,
B n A belong to F . Then, by additivity of v,

v.S [ T/C v.S \ T/ D v.S n T/C v.T n S/C 2v.S \ T/

D v.S/C v.T/:

ut

k-Monotone and Totally Monotone Games

In the whole section, we suppose that F is a (set) lattice. Under this condition, the
definition of k-monotonicity can be generalized. A game v on .X;F/ is k-monotone
for some k > 2 if for any family of k sets A1; : : : ;Ak in F ,

v
� k_

iD1
Ai

�
6

X

I�f1;:::;kg
I¤¿

.�1/jIjC1v
�^

i2I

Ai

�
: (2.121)

Similarly as in the case ofF D 2X , we say that v is totally monotone or 1-monotone
if it is monotone for every k > 2. A first fundamental result is the generalization of
Theorem 2.21(ii).

Lemma 2.118 Let v be a game on .X;F/ where F is a lattice. Then v is totally
monotone if and only if v is .jF j � 2/-monotone.

This result was proved by Barthélemy [18], and the proof of Theorem 2.21(ii)
can be used mutatis mutandis.

We turn now to k-valuations. A k-valuation is a function on a lattice L for which
(2.121) holds with equality. Similarly, an 1-valuation is a set function being a k-
valuation for every k > 2. Note that a 2-valuation is a modular function, and that a
probability measure is an 1-valuation.

Interestingly, the existence of a k-valuation on a lattice L gives information on its
properties. The following results are well known in lattice theory (see, e.g., Birkhoff
[30, Chap. X]).
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Lemma 2.119 Let L be a lattice. The following holds.

(i) L is modular if and only if it admits a strictly monotone 2-valuation;
(ii) L is distributive if and only if it admits a strictly monotone 3-valuation;

(iii) L is distributive if and only if it is modular and every strictly monotone
2-valuation is a 3-valuation;

(iv) L is distributive if and only if it is modular and every strictly monotone
2-valuation is an 1-valuation.

In view of these results, a natural question is: Does the existence of a totally
monotone function on a lattice L implies some property on L? The answer is
negative.

Lemma 2.120 (Barthélemy [18]) Any lattice L admits a monotone and totally
monotone function vanishing at the bottom of L.

Proof Let J .L/ be the set of join-irreducible elements of L. We use the mapping �
on L defined by �.x/ D ft 2 J .L/ W t 6 xg (Sect. 1.3.2). We know that � is injective,
and satisfies �.x ^y/ D �.x/\�.y/, and �.x/[�.y/ � �.x _y/. Define the function
f on L by f .x/ D j�.x/j. It is obviously monotone and f .?/ D 0. We claim that f is
also a totally monotone function on L. Since jAj C jBj D jA \ Bj C jA [ Bj for any
set A;B � L, j � j is a strictly monotone 2-valuation on the Boolean lattice 2L, hence
distributive. It follows from Lemma 2.119(iv) that j � j is an 1-valuation,18 hence
for any x1; : : : ; xk 2 L

f
� k_

iD1
xi

�
>
ˇ
ˇ
ˇ

k[

iD1
�.xi/

ˇ
ˇ
ˇ

D
X

J�f1;:::;kg
J¤¿

.�1/jJjC1
ˇ
ˇ
ˇ
\

j2J

�.xj/
ˇ
ˇ
ˇ

D
X

J�f1;:::;kg
J¤¿

.�1/jJjC1 f
�^

j2J

xj

�
;

which proves the claim. ut
This result means that belief measures (i.e., a monotone and totally monotone game)
exist on any lattice. By contrast, Lemma 2.119(iv) tells us that a probability measure
can live only on a distributive lattice.

The last question we address in this section is the following: In the classical case
F D 2X , we know by Theorem 2.33(v) that there is an equivalence for a game
between being monotone and totally monotone, and having a nonnegative Möbius

18See also (2.4).
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transform. Does this equivalence still holds when F is any lattice? The answer is
positive.

We recall that the Möbius transform is defined for functions on lattices in
Remark 2.32(ii).

Theorem 2.121 Let 	 be a capacity on .X;F/, where F is a lattice. Then 	 has a
nonnegative Möbius transform if and only if 	 is totally monotone.

Proof )/ By assumption, we know that m	 is nonnegative and satisfies m	.¿/ D
0. For any S 2 F , we consider its principal ideal #S D fT 2 F W T � Sg. We
recall (see Sect. 1.3.2) that S � S0 implies #S � #S0 , #S [ #S0 � #.S _ S0/ , and
#S \ #S0 D #.S ^ S0/ . Consider the Boolean lattice 2F together with the function
m0 defined on it by m0.A/ D m	.S/ if A D #S for some S 2 F , and 0 otherwise.
Thus, m0 considered to be the Möbius transform of some set function 	0 on 2F

implies that 	.S/ D 	0.#S / for every S 2 F , and 	0 is totally monotone on 2F .
Taking a family of k sets S1; : : : ; Sk 2 F , we have

	.S1 _ � � � _ Sk/ D 	0.#.S1 _ � � � _ Sk/ /

> 	0.#S1 [ � � � [ #Sk /

>
X

J�K
J¤¿

.�1/jJjC1	0.
\

j2J

?
ySj /:

However 	0
�T

j2J

?
ySj

�
D 	0

�?
?
y

�V
j2J Sj

� �
D 	

�V
j2J Sj

�
, whence the result.

(/ Taking a totally monotone capacity 	, we proceed inductively to show that
m	 > 0, using the formula

m	.S/ D 	.S/�
X

T
S
T2F

m	.T/ .S 2 F/: (2.122)

We already observe that m	.¿/ D 0, and from (2.122) and the nonnegativity of 	,
we deduce that m	.S/ > 0 for all atoms of F . Take S 2 F that is not an atom, and
define S D fT 2 F W T � Sg D .#S / n fSg. Observe that S D S

T
S
T2F #T . Now, we

introduce the set function M on 2F defined by M.T / D P
T2T m	.T/, which is an

additive set function, and therefore an 1-valuation. From the above considerations,
we have

X

T2S
m	.T/ D M.S/ D M

� [

T
S
T2F

#T
�

D
X

T �S
T ¤¿

.�1/jT jC1� X

K2TT2T #T

m	.K/
�
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D
X

T �S
T ¤¿

.�1/jT jC1� X

K2#VL2T L

m	.K/
�

D
X

T �S
T ¤¿

.�1/jT jC1	
� ^

L2T
L
�
:

Moreover, since 	 is totally monotone,

	.S/ > 	
� _

T2S
T
�

>
X

T �S
T ¤¿

.�1/jT jC1	.
� ^

T2T
T
�

D
X

T2S
m	.T/:

It follows that

m	.S/ D 	.S/�
X

T2S
m	.T/ > 0:

ut
Remark 2.122 The “if” part was shown by Barthélemy [18], while the “only if” part
was shown more recently by Zhou [359], contradicting a (wrong!) counterexample
found by the author [168, Example 2]. }



Chapter 3
The Core and the Selectope of Games

This second fundamental chapter addresses the following problem: Given a game or
a capacity, does there exist an additive game dominating it on every subset, under
the constraint that both coincide on the universal set? For normalized capacities, the
problem amounts to finding probability measures dominating a given capacity, while
in cooperative game theory, it amounts to the problem of sharing a cake so that no
coalition of players is dissatisfied. The set of additive games (or equivalently vectors,
if one represents additive games by their “distribution”) dominating a given game is
called the core of that game. It is a convex polyhedron, whenever it is nonempty, and
its properties have been studied in depth. In Sect. 3.2, we study the case where the
game is defined on the whole power set, while Sect. 3.3 addresses the case of games
on set systems. The latter case reveals to be much more complex, because the core is
most often unbounded and may even have no vertices. Section 3.4 goes further in the
analysis of the core of games on the power set, through the concept of exact games
and large cores. Exact games are those which coincide with the lower envelope of
their core and are of primary importance in decision under uncertainty. A game with
large core has the property that for any vector y dominating it without constraint,
it is possible to find a core element x smaller than y. The last topic addressed in
this chapter is the selectope of a game (Sect. 3.5). It is the set of additive games (or
vectors) obtained by sharing the Möbius transform of that game on every element. It
always contains the core and equality holds if and only if the game has a nonnegative
Möbius transform, except possibly on singletons.

© Springer International Publishing Switzerland 2016
M. Grabisch, Set Functions, Games and Capacities in Decision Making,
Theory and Decision Library C 46, DOI 10.1007/978-3-319-30690-2_3
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In the whole chapter, we consider a finite set N, with jNj D n.1 The chapter
makes an extensive use of Sects. 1.3.3–1.3.6 on polyhedra and linear programming.

3.1 Definition and Interpretations of the Core

Definition 3.1 Let us consider a game v 2 G.N;F/, where F is any set system on
N (Definition 2.101). The core of v is defined by

core.v/ D fx 2 R
N W x.S/ > v.S/;8S 2 F ; x.N/ D v.N/g; (3.1)

where x.S/ is a shorthand for
P

i2S xi. By convention, x.¿/ D 0.

The core of a game v is therefore a set of real vectors x having the property that the
additive game generated by x is greater than v. Since it is defined by a set of linear
inequalities plus one linear equality, it is a convex closed polyhedron of dimension
at most n � 1, which may be empty.

The next two sections study in depth the properties of this polyhedron. Before-
hand, we make some remarks on the interpretations of the core. To this end, we
recall the two main interpretations of games and capacities given in Sect. 2.4.1.

In the first interpretation, N is a set of players, agents, etc., and v.S/ is the
“worth” of coalition S � N. This pertains to cooperative game theory, social
choice and group decision making, however the notion of core is best suited to
cooperative game theory, and we therefore stick to this framework here. For a better
understanding, we develop a little bit more its presentation (see Driessen [96], Owen
[263], Peleg and Sudhölter [267] and Peters [268] for monographs on the topic, and
Examples 2.6 and 2.8 for illustrations of this situation).

In most cases of interest, the function v represents the maximum benefit (or
minimum cost, in which case inequalities in (3.1) have to be reversed) a coalition
can achieve by cooperation of its members (or by using in common a resource).
If all players in N cooperate, the quantity v.N/ represents the achieved benefit (or
paid cost) in total.2 Let us assume that the coalition N eventually forms. Then each
player in N would like to be rewarded for his cooperation, for having contributed
to the realization of the total benefit v.N/. This amounts to defining an allocation

1We apologize for the change of notation from X to N, since X is the universal set in Chaps. 2
and 4. We chose X for these chapters of general interest, as being “neutral,” compared to the more
specific � (obviously related to uncertainty), E (standing for the set of edges, which is common
in combinatorial optimization), N (standard in game theory and for pseudo-Boolean functions),
etc. We have chosen N in this chapter because it is more closely related to game theory. Also,
throughout the chapter, vectors in R

n are used, more conveniently denoted by x; y; z, which could
have caused some confusion with elements of X.
2Generally, people think benefits are positive amounts, however v.N/ could be negative and is
considered then to be a loss. The following discussion works as well when v.N/ is a loss.



3.1 Definition and Interpretations of the Core 147

vector x 2 R
N (identified as R

n, letting N D f1; : : : ; ng), where xi is the reward
given to player i. Of course x.N/ D P

i2N xi could not exceed v.N/, hence the
best to do is to impose x.N/ D v.N/, in order to maximize the rewards. Now,
suppose there exists a coalition S 2 F such that x.S/ < v.S/. Then this coalition
has no interest to cooperate with the players in N n S to form the grand coalition N,
because doing so they would get x.S/, strictly less than what they could achieve by
themselves; i.e., v.S/. In other words, in such a situation, the game is “unstable” in
the sense that S would leave N and form a subgame. The core is therefore the set of
allocation vectors that are optimal and ensure stability of the game. For this reason,
it is a central notion in cooperative game theory. It was introduced by Shapley [301],
although the first definition of the core was proposed by Gillies [158] in a different
form. The two forms coincide in particular for superadditive games.

In the second interpretation, N is the set of possible outcomes of some experiment
(states of nature), and v has to be monotone; i.e., it is a capacity	, which in addition
is supposed to be normalized. A subset A 2 F is an event, and 	.A/ quantifies the
amount of uncertainty that A realizes, in other words, that the true state of nature
lies in A. If 	 is not a probability measure, the usual and well-developed tools
of probability theory and statistics do not apply. It is therefore tempting to try to
replace 	 by a probability measure, the problem being which one to choose and
under which rationale. The commonly admitted interpretation is the following: if
enough statistical evidence would be available on the realization of A, 	.A/ would
be a probability. If not, it means that our knowledge on the experiment is incomplete,
and we lack evidence on the realization of A. Therefore, the amount of certainty
(accumulated evidence) on the realization of A, quantified by 	.A/, should be less
than the (true) probability P.A/ of the event A. It follows that the set of probability
measures compatible with the incomplete model represented by 	 is, assuming that
F is an algebra (see Definition 2.102),

fP probability measure on .N;F/ W P.A/ > 	.A/;8A 2 Fg:

Because a probability measure on a finite set N is equivalently represented by a
vector in R

N (under some mild condition on F ), and since P.N/ D 	.N/ D 1, it
follows that the set of compatible probability measures is the core of 	. This view of
uncertainty is a particular case of the model of imprecise probabilities (Sect. 5.3.5).

Referring now to the usage of games in combinatorial optimization (see
Sect. 2.4.2), we have seen that a submodular capacity is used under the name
of rank function � of a polymatroid .N; �/. In this context, a dual notion of the
core was introduced by Edmonds [122], the base polyhedron associated to the
polymatroid .N; �/:

B.�/ D fx 2 R
NC W x.A/ 6 �.A/;8A 2 2N ; x.N/ D �.N/g:

It is easy to see that B.�/ D core.�/, the core of the conjugate capacity [see
(2.1)]. In game theory, B.�/ is sometimes called the anticore of �, and is denoted by
core�.�/. Edmonds [122] has shown that, when � is the rank function of a matroid,
the convex hull of the characteristic vectors of the bases of the matroid is precisely
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B.�/. Following Edmonds, the structure of the base polyhedron was studied in depth
in various papers by Fujishige and Tomizawa (see a synthesis in Fujishige [149,
Sect. 3.3]).

3.2 The Core of Games on .N; 2N/

The core of games whose domain is 2N was thoroughly studied in the literature,
and its structure is completely determined for supermodular games. We begin by
mentioning the following relation between the cores of the game and its conjugate
(we let the readers check that it is correct):

core.v/ D �core.�v/; (3.2)

and the relation between the core and the anticore:

core�.v/ D core.v/: (3.3)

We recall that the core is always a closed convex polyhedron of dimension at
most n � 1. Moreover it is bounded, as is easy to see from the inequalities

xi > v.fig/ .i 2 N/ (3.4)

valid for any x 2 core.v/, and the equality
P

i2N xi D v.N/. Therefore, the core is
completely determined by its extreme points. However, the core may be empty, as
shown by the following example.

Example 3.2 Let N D f1; 2; 3g and v such that v.fig/ D 1, i 2 N, and v.N/ < 3.
Then the inequalities xi > 1 for i 2 N, and x1Cx2Cx3 D v.N/ < 3 are incompatible,
hence the core is empty. Þ
We begin by examining when the core is nonempty.

3.2.1 Nonemptiness of the Core

Definition 3.3 Let B � 2N be a collection of nonempty sets. We say that B is
a balanced collection if there exist �A > 0, A 2 B, such that for each i 2 N,
P

A2B W A3i �A D 1. In shorter form:

X

A2B
�A1A D 1N : (3.5)

The quantities �A, A 2 B, form a system of balancing weights.
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Note that any partition of N is a balanced collection with weights all equal to 1.
Hence the notion of balanced collection generalizes the notion of partition.

Example 3.4 Let N D f1; 2; 3g and consider B D ff1; 2g; f1; 3g; f2; 3gg. This
is balanced collection with weights . 1

2
; 1
2
; 1
2
/. It can be checked that there is no

other system of balancing weights. However, if we consider the collection B D
ff1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg, it is also balanced but there exist infinitely many
systems of balancing weights, of the form .˛; ˛; ˛; 1 � 2˛/, with 0 < ˛ < 1

2
. Þ

Balanced collections have the property to be separating: for all i; j 2 N, if there
exists A 2 B such that i 2 A 63 j, then there exists B 2 B such that j 2 B 63 i. This
can be seen from

1 D
X

A2B W i2A

�A D
X

A2B W i2A 63j

�A C
X

A2B W i;j2A

�A

1 D
X

B2B W j2B

�B D
X

B2B W j2B 63i

�B C
X

B2B W i;j2B

�B;

where .�A/A2B is a system of balancing weights for B. A characterization of
balanced collections is given in the next theorem.

Theorem 3.5 A collection B � 2N of nonempty sets is balanced if and only if for
every vector y 2 R

N such that y.N/ D 0, either y.S/ D 0 for every S 2 B or there
exist S;T 2 B such that y.S/ > 0 and y.T/ < 0.

Proof (Zumsteg [361], Derks and Peters [86]3)
)/ Suppose B is balanced with .�S/S2B a system of balancing weights. Then for

any y 2 R
N ,

X

S2B
�Sy.S/ D y.N/:

Letting y.N/ D 0, the positivity of �S, S 2 B implies that either all y.S/ are zero, or
there must exist S;T 2 B such that y.S/ > 0 and y.T/ < 0.

(/ Suppose that for all y 2 R
N such that y.S/ > 0, S 2 B, and y.N/ D 0,

it holds y.S/ D 0. Putting B� D B n fNg, this means that the set of inequalities
fy.S/ > 0; S 2 B�; y.N/ D 0g implies the inequalities �y.S/ > 0 for all S 2 B�.
Hence, by Farkas’ Lemma II (Theorem 1.7), for all S 2 B�, there exist nonnegative
coefficients �S

T , T 2 B� and �S
N 2 R such that

X

T2B�

�S
T1T C �S

N1N D �1S .S 2 B�/:

3Derks and Peters show a slightly more general result. We follow their proof.
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Observe that �S
N < 0 for all S 2 B�, hence letting

�S
T D

8
<

:

�S
T

��S
N
; if T ¤ S

�S
SC1

��S
N
; otherwise

we find

X

T2B�

�S
T1T D 1N .S 2 B�/;

with for any S 2 B�, �S
T > 0 for any T 2 B�, �S

S > 0. Define

�T D
P

S2B� �S
T

jB�j .T 2 B�/:

Observe that �T > 0 for all T 2 B�, and
P

T2B� �T1T D 1N . Hence B� (and
therefore B) is balanced.

ut
Definition 3.6 A game v on N is balanced if for any balanced collection B it holds

v.N/ >
X

A2B
�Av.A/:

Theorem 3.7 (Bondareva-Shapley theorem, weak form) Let v 2 G.N/. Then
core.v/ is nonempty if and only if v is balanced.

Proof Consider the set of 2n � 2 inequalities plus one equality defining the core. By
Farkas’ Lemma (Theorem 1.6), the core is nonempty if and only if for every vector
y 2 R

2Nnf¿g such that yA > 0 for A ¤ N, and
P

A3i yA D 0 for all i 2 N, we have
P

A22Nnf¿g yAv.A/ 6 0. Take any such vector different from 0, and remark that

X

A3i

yA D
X

A3i;A¤N

yA C yN D 0;8i 2 N;

yielding yN < 0 because not all yA, A ¤ N, can be 0. Hence, we may assume w.l.o.g.
that yN D �1; then core.v/ ¤ ¿ if and only if for every y 2 R

2Nnf¿;Ng with

yA > 0;8A � N;A ¤ ¿; and
X

¿¤A
N

yA1A D 1N (3.6)
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we have
X

¿¤A
N

yAv.A/ 6 v.N/: (3.7)

Moreover, each vector y satisfying (3.6) corresponds to the balanced collection B D
f¿ ¤ A � N W yA > 0g with system of balancing weights �A D yA, A 2 B, and
vice versa. Therefore (3.7) means that v is balanced. ut
Remark 3.8 This result was shown independently by Bondareva [34, 35] and
Shapley [299]. The classical proof uses the strong form of the duality theorem in
linear programming (see, e.g., Peleg and Sudhölter [267]). Our proof uses Farkas’
Lemma. It shows that there is no need to consider balanced collections containing
N. The sharp form of the theorem (Theorem 3.12) will discard from the analysis
many more balanced collections. }

We say that a balanced collection is minimal if it does not contain a proper
subcollection that is balanced.

Lemma 3.9 A balanced collection is minimal if and only if it has a unique system
of balancing weights.

Proof (/ Suppose that B is not minimal. Then there exists B� � B that is balanced
with a system of balancing weights .��

A/A2B� . Then B has infinitely many systems
of balancing weights .�˛A/A2B, defined by

�˛A D
(
˛�A C .1 � ˛/��

A; if A 2 B�

˛�A; if A 2 B n B�

with 0 < ˛ 6 1.
)/ Suppose that B has two different systems of balancing weights .�A/A2B and

.�0
A/A2B. Then there exists A 2 B such that �0

A > �A, and we put

� D min
n �A

�0
A � �A

W �0
A > �A

o
:

We define the system of weights . Q�A/A2B:

Q�A D .1C �/�A � ��0
A .A 2 B/:

Then B� D fA 2 B W Q�A > 0g is a proper subcollection of B that is balanced with
system of balancing weights . Q�A/A2B� . ut
Let us consider the convex polytope

F D
n
� 2 R

2Nnf¿g W
X

¿¤A�N

�A1A D 1N ; �A > 0; 8¿ ¤ A � N
o
:
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Lemma 3.10 Let � 2 F and consider B D fA � N W �A > 0g. Then � is an
extreme point of F if and only if B is a minimal balanced collection.

Proof )/ If B is not minimal, then there exists B� � B that is balanced, with a
system of balancing weights .��

A/A2B� . We set

�A D .1 � t/�A C t��
A

� 0
A D .1C t/�A � t��

A

for all A 2 B, letting ��
A D 0 if A 62 B�, with t > 0 small enough to ensure �A; �

0
A >

0 for all A 2 B. Then .�A/A2B, .� 0/A2B are systems of balancing weights for B that
are different, because �A < � 0

A for all A 2 B n B�. Moreover, �A D 1
2
.�A C � 0

A/ for
all A 2 B, hence � is not an extreme point.

(/ Suppose that B is a minimal collection. If � is not an extreme point, there
exist distinct �; � 0 2 F such that

�A D 1

2
.�A C � 0

A/ .A 2 B/:

Since �; � 0 are nonnegative, �A D 0 implies �A D � 0
A D 0, therefore �; � 0 define

distinct systems of balancing weights for collections C; C 0, subcollections of B,
which by Lemma 3.9 contradicts the minimality of B. ut
Corollary 3.11 A minimal balanced collection contains at most n sets.

Proof From Lemma 3.10, B is minimal if and only if its unique system of balancing
weight corresponds to an extreme point � of F. Therefore � is the (unique) solution
of a system of at least 2n�1 equalities among the system fPA3i �A D 1; i 2 NI�A >
0;A 2 2N n f¿gg. Since the number of equalities in this system is n C 2n � 1� jBj,
the above condition yields jBj 6 n. ut
Theorem 3.12 (Bondareva-Shapley theorem, sharp form) Let v 2 G.N/. Its
core is nonempty if and only if for any minimal balanced collection B with system
of balancing weights .�A/A2B, we have v.N/ >

P
A2B �Av.A/. Moreover, none of

the inequalities is redundant, except the one for B D fNg.

Proof Every � 2 F is a convex combination of extreme points �1; : : : ; �k:

� D ˛1�
1 C � � � C ˛k�

k:

For each �i, the inequality v.N/ >
P

A2B �i
Av.A/ is valid, therefore

kX

iD1
˛iv.N/

„ ƒ‚ …
v.N/

>
X

A2B
v.A/

kX

iD1
˛i�

i
A

„ ƒ‚ …
�A

:

Hence v is balanced, and by Theorem 3.7 its core is nonempty.
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The converse statement is obvious.
It remains to prove that none of the inequalities in the system fPA2B �BA v.A/ 6

v.N/;B minimal balanced ;B ¤ fNgg is redundant. From Farkas’ Lemma II
(Theorem 1.7), it suffices to prove that choosing any inequality

P
A2B� �B

�

A v.A/ 6
v.N/ in the system, a conic combination of the left members of the remaining ones
cannot give the left member of the chosen inequality. In symbols, for all nonnegative
coefficients �B , with B minimal balanced and different from B�, the equalities

X

B¤B�;B3S

�B�BS D
(
�B

�

S ; S 2 B�

0; otherwise

cannot hold simultaneously. Choose S 2 B�. Then there exists some minimal
balanced collection QB ¤ B� such that QB 3 S and � QB > 0 (otherwise 0 < �B

�

S D
P

B¤B�;B3S �
B�BS is not possible). Because QB ¤ B� and QB � B� is impossible by

minimality, there exists T 2 QB, T 62 B�. Therefore

0 D
X

B¤B�;B3T

�B�BT > �
QB� QB

T > 0;

a contradiction. ut
Example 3.13 We enumerate the minimal balanced collections for N D f1; 2; 3; 4g.
Every partition is obviously minimal, and there are 15 partitions of N. Apart these,
the following are minimal balanced collections:

B D ff1; 2; 3g; f1; 2; 4g; f1; 3; 4g; f2; 3; 4gg; with � D
�1

3
;
1

3
;
1

3
;
1

3

�

B D ff1; 2g; f1; 3g; f1; 4g; f2; 3; 4gg; with � D
�1

3
;
1

3
;
1

3
;
2

3

�

B D ff1; 2g; f1; 3g; f2; 3g; f4gg; with � D
�1

2
;
1

2
;
1

2
; 1
�

B D ff1; 2g; f1; 3; 4g; f2; 3; 4gg; with � D
�1

2
;
1

2
;
1

2

�

B D ff1; 2; 3g; f1g; f3; 4g; f2; 4gg with � D
�1

2
;
1

2
;
1

2
;
1

2

�

and those obtained by permutations. Þ
There exists an algorithm generating all minimal balanced collections (see Peleg

[266]).
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3.2.2 Extreme Points of the Core

Permutations on N correspond bijectively to maximal chains in the Boolean lattice
.2N ;�/ in the following way. Letting � be a permutation on N, we associate to it a
maximal chain C� ; i.e., a sequence of n C 1 sets ¿ D A0 � A1 � � � � � An D N
defined by

A1 D f�.1/g
A2 n A1 D f�.2/g

::: D :::

An n An�1 D f�.n/g;

that is, Ai D f�.1/; : : : ; �.i/g. The usual convention is that i is the rank, and �.i/ is
the element of rank i. Next we associate to � and v its marginal vector x�;v 2 R

N

defined by

x�;v�.i/ D v.Ai/� v.Ai�1/ .i 2 N/: (3.8)

It is easy to check that this is equivalent to

iX

jD1
x�;v�. j/ D x�;v.Ai/ D v.Ai/ .i 2 N/: (3.9)

The next theorem asserts that the convex hull of the marginal vectors always
contains the core. As we will see, this convex hull, sometimes called the Weber
set [344], plays a central rôle in this chapter. We denote it by Web.v/:

Web.v/ D conv.x�;v W � 2 S.N//: (3.10)

Theorem 3.14 For any game v in G.N/, Web.v/ � core.v/.

Proof (Derks [83]) Suppose there exists x 2 core.v/ n Web.v/. By the separating
hyperplane Theorem 1.5, there exists y 2 R

n such that

hw; yi > hx; yi .w 2 Web.v//:

Let � 2 S.N/ be a permutation such that y�.1/ > y�.2/ > � � � > y�.n/. In particular
for w D x�;v , we find

hx�;v; yi > hx; yi: (3.11)
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Since x 2 core.v/, we have

hx�;v; yi D
nX

iD1
y�.i/

�
v.f�.1/; : : : ; �.i/g/� v.f�.1/; : : : ; �.i � 1/g�

D y�.n/v.N/ � y�.1/v.¿/C
n�1X

iD1
.y�.i/ � y�.iC1//v.f�.1/; : : : ; �.i/g/

6 y�.n/x.N/C
n�1X

iD1
.y�.i/ � y�.iC1//x.f�.1/; : : : ; �.i/g/

D
nX

iD1
y�.i/x.f�.1/; : : : ; �.i/g/�

nX

iD2
y�.i/x.f�.1/; : : : ; �.i � 1/g/

D
nX

iD1
y�.i/x�.i/ D hy; xi;

which contradicts (3.11). ut
The next important theorem shows that the converse holds only for supermodular
games, and makes clear the polyhedral structure of the core.

Theorem 3.15 (Structure of the core of supermodular games) Let v be a game
in G.N/. The following propositions are equivalent.

(i) v is supermodular;
(ii) x�;v 2 core.v/ for all � 2 S.N/;

(iii) core.v/ D Web.v/;
(iv) ext.core.v// D fx�;v W � 2 S.N/g.

Proof (i),(ii): see proof of (i),(ii) for Theorem 3.27, which is more general.
(iv))(ii): Clear.
(ii))(iii): (ii) implies that conv.fx�;vg�2S.N// � core.v/. The converse holds by

Theorem 3.14.
(iii))(iv): It remains to prove that every marginal vector is an extreme point of

the core. Take � a permutation and the corresponding maximal chain C� . Observe
that the n inequalities x�;v.S/ > v.S/ for S 2 C� are tight [see Eq. (3.9)]. This
system of linear equalities is triangular with no zero on the diagonal, and therefore
nonsingular. Hence it defines an extreme point. ut
Remark 3.16

(i) Theorem 3.15 is well-known in game theory, where it was shown by Shapley
[301] in 1971 (implications (i))(ii) and (i))(iv)) and Ichiishi [201] (implica-
tion (ii))(i)). At the same time, Edmonds [122] (acknowledged in Shapley
[301]) proved (i))(iv) in terms of the base polyhedron (Sect. 3.1): for a
monotonic submodular game, the marginal vectors are the extreme points of
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the base polyhedron (see also Lovász [226]). Even earlier in 1967, Dempster
[77] proved that the marginal vectors are the extreme points of the core for
belief measures (totally monotone and monotone games).

(ii) When games are not supermodular, the core (if nonempty) can have extreme
points that are not marginal vectors. For example, taking n D 3 and the game
defined by v.12/ D v.13/ D 60, v.23/ D 20, v.123/ D 100, and v.S/ D 0

otherwise, it can be checked that .20; 40; 40/ is an extreme point of core.v/ but
not a marginal vector.

}

3.2.3 Additivity Properties

The next theorem summarizes the properties relating addition of games and the
(Minkovsky) sum of their cores and Weber sets.

Theorem 3.17 The following holds.

(i) core.v/C core.v0/ � core.v C v0/, for all balanced games v; v0;
(ii) Web.v/C Web.v0/ � Web.v C v0/, for all games v; v0;

(iii) If v; v0 are supermodular, then core.v/C core.v0/ D core.v C v0/.

Proof

(i) Take x 2 core.v/ and x0 2 core.v0/. Then for any S � N,

.x C x0/.S/ D x.S/C x0.S/ > v.S/C v0.S/ D .v C v0/.S/;

with equality if S D N. Therefore, x C x0 2 core.v C v0/.
(ii) Take x 2 Web.v C v0/. Then x is a convex sum of marginal vectors of v C v0:

x D
X

i

˛ix
�i;vCv0 D

X

i

˛ix
�i;v C

X

i

˛ix
�i;v

0 D y C y0

where y; y0 are elements of Web.v/ and Web.v0/ respectively, proving that
x 2 Web.v/C Web.v0/.

(iii) If v; v0 are convex, it follows from Theorem 3.15 that the core and the Weber
set coincide for these games, hence the result follows by (i) and (ii).

ut
The following examples show that the inclusions in the above theorem may be strict.

Example 3.18 Consider N D f1; 2; 3g and the following games v; v0: The cores of
v; v0 are reduced to the singletons f.1; 1; 0/g and f.1; 0; 1/g, respectively, however
.1; 1; 0/C .1; 0; 1/ ¤ .3; 0; 1/ 2 core.v C v0/.
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S 1 2 3 12 13 23 123

v.S/ 1 0 0 2 1 0 2

v0.S/ 0 0 1 1 2 0 2

.v C v0/.S/ 1 0 1 3 3 0 4

As for the Weber set, consider the two following games: Observe that v C v0

S 1 2 3 12 13 23 123

v.S/ 1 0 �1 1 0 1 1

v0.S/ 0 0 1 0 1 �1 0

.v C v0/.S/ 1 0 0 1 1 0 1

is additive, therefore its Weber set reduces to f.1; 0; 0/g. However, .0; 2;�1/ and
.0; 0; 0/ are marginal vectors of v and v0, respectively, and their sum is not equal to
.1; 0; 0/. Þ

3.3 The Core of Games on Set Systems

The study of the core for games with restricted cooperation is much more complex
because most often the core is no longer a bounded polyhedron: it is often
unbounded, and may even have no vertices. The readers can consult also the survey
paper [170] of the author for other results.

We consider throughout this section a set system F (see Sect. 2.19 for all
definitions of notions used hereafter) that contains N. The last assumption is
necessary otherwise the condition x.N/ D v.N/ does not make sense. For a good
understanding of Sects. 3.3.2–3.3.5, we recommend to read Sect. 1.3.4 before.

3.3.1 Nonemptiness of the Core

The results of Sect. 3.2.1 apply without change: it suffices to replace 2N by F
everywhere in the results and proofs. We refer to Faigle [128] for an alternative
equivalent view.

A simple result is given in the next theorem. First, we need the notion of
connectedness. We say that i and j are connected in F if there is a sequence of
elements i1; : : : ; ik with i1 D i and ik D j such that for each ` D 1; : : : ; k � 1, either
for each S 2 F , i` 2 S implies i`C1 2 S, or for each S 2 F , i`C1 2 S implies i` 2 S.
Then F is connected if every two elements in N are connected.
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When F D O.N;�/, i.e., a distributive lattice of height n, the above definition
simplifies as follows: i and j are connected if there exists a sequence i1; : : : ; ik with
i1 D i and ik D j such that for each ` D 1; : : : ; k � 1, either i` 
 i`C1 or i`C1 
 i`.
In short, i and j are connected in the sense of graph theory in the Hasse diagram of
.N;�/.
Theorem 3.19 (Grabisch and Sudhölter [181]) Let F be a set system containing
N. The following holds.

(i) If F is connected, then for any game v in G.N;F/, core.v/ ¤ ¿.
(ii) If F is not connected, then there exists a game v on F such that core.v/ D ¿.

Proof (i) Let B � F be a balanced collection and .�A/A2B be a system of balancing
weights. In view of Theorem 3.12 it suffices to show that B D fNg is the only
minimal balanced collection. Let R 2 B, R ¤ ¿: Then there exists i 2 R. In order
to show that R D N, let j ¤ i. As F is connected, there exist i1; : : : ; ik 2 N such
that i1 D i; ik D j, and for all ` D 1; : : : ; k � 1, either for all S 2 F i` 2 S implies
i`C1 2 S, or for all S 2 F i`C1 2 S implies i` 2 S. We show that i` 2 R by induction
on `. For ` D 1 nothing has to be proved. Assume that i` 2 R for some ` < k. If
i` 2 S implies i`C1 2 S, then i`C1 2 R. If i`C1 2 S implies i` 2 S, any S 2 B with
i`C1 2 S also contains i`. As B is separating (see Sect. 3.2.1), i`C1 2 R.

(ii) Let F be non-connected and v 2 G.F/ that satisfies

v.N/ <
X

fv.A/ W A is a connected component of Fg;

where a connected component of F is any connected maximal subset of F (i.e., any
superset is not connected). Clearly, core.v/ D ¿. ut

3.3.2 Boundedness

We study in this section whether the core, whenever nonempty, is pointed (i.e., has
vertices), and if yes, if it is bounded. We recall from Sect. 1.3.4 that this amounts to
studying the recession cone of the core:

core.0/ D fx 2 R
N W x.N/ D 0; x.S/ > 0;8S 2 Fg:

The next example shows that one cannot expect that the core is pointed or bounded
in general.

Example 3.20 Consider N D f1; 2; 3g and the set system F D f¿; 1; 123g. Since
a vertex of the core of a game v is defined by a set of at least three equalities in
core.v/ D fx 2 R

3 W x1 > v.f1g/; x.N/ D v.N/g, there are clearly not enough sets
in F to achieve this. Hence the core cannot be pointed.
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Let us now consider F 0 D f¿; 1; 2; 123g. The recession cone core.0/ reads

x1 > 0

x2 > 0

x1 C x2 C x3 D 0:

The core, if nonempty, is pointed because putting equality everywhere leads to a
system whose unique solution is 0. Now, the core is not bounded because the vector
.1; 0;�1/ belongs to core.0/ (it is the supporting vector of a ray). Þ

From the theory of polyhedra, the general conditions for the core (when
nonempty) to be pointed is that the system of linear equalities in real variables

x.S/ D 0 .S 2 F n f¿g/;

should have 0 as unique solution. Equivalently, by Gauss elimination, the condition
is that for all i 2 N, there exists a linear combination of the equations yielding
xi D 0:

8i 2 N;8S 2 F n f¿g; 9˛i
S 2 R;

X

S2Fnf¿g
˛i

S1S D 1i: (3.12)

If this condition is satisfied, we say that the set system F is nondegenerate,
otherwise it is said to be degenerate.

Several simple sufficient conditions for nondegenerateness or degenerateness are
noteworthy:

(i) F is degenerate if jF n f¿gj < n (this is Example 3.20);
(ii) F is degenerate if there exists a macro-element, that is, a subset K � N, jKj >

1, such that either K � S or K \ S D ; for every nonempty S 2 F [by (3.12)];
(iii) F is nondegenerate if F contains all singletons [by (3.12)];
(iv) F is nondegenerate if F contains a chain of length n (e.g., if F is regular, in

particular, if F D O.N;�/; i.e., a distributive lattice of height n). Indeed, a
chain of length n is a maximal chain ¿ D S0; S1; : : : ; Sn D N, hence all 1fig’s
can be recovered from 1Sj �1Sj�1 , for two consecutive sets Sj; Sj�1 in the chain.

The following result shows that if F is closed under intersection, the absence of
macro-element is a necessary and sufficient condition to be nondegenerate.

Theorem 3.21 (Necessary and sufficient condition to be nondegenerate)
(Faigle et al. [133]) Let F be closed under intersection. Then F is nondegenerate
if and only if it contains no macro-element.

Proof The “only if” part is obvious since the presence of a macro-element implies
degeneracy.
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Suppose that F is closed under intersection and has no macro-element. We prove
by induction on n D jNj that it is nondegenerate. The assertion is easily checked for
n D 1, with the only possible set system f;; f1gg. Suppose the assertion holds till
some value n � 1 and let us prove it for n.

CLAIM: there exists i 2 N such that fig 2 F .
PROOF OF THE CLAIM: Since F has no macro-element, necessarily every atom

is a singleton. Indeed, suppose per contra that S is an atom, with jSj > 1. Because
S is not a macro-element, there exists T 2 F separating S; i.e., j 2 T 63 k for
some j; k 2 S. Since F is closed under intersection, it follows that S \ T 2 F and
; ¤ S \ T ¨ S, a contradiction with the fact that S is an atom. �

Consider then F�i D fS � N n i W S or S [ i 2 Fg on N n i, the collection of sets
obtained from F by removing i in every set. Note that ; 2 F�i. We prove that F�i

is a set system containing N n i without macro-elements.

– F�i 3 N n i: clear because N 2 F .
– F�i is closed under intersection: take S; S0 2 F�i. Then three cases arise. If

S; S0 2 F , then S \ S0 2 F and i 62 S \ S0, hence S \ S0 2 F�i. If S 2 F and
S0 [ i 2 F , then i 62 S \ .S0 [ i/ 2 F , and therefore S \ .S0 [ i/ D S \ S0 2
F�i. Lastly, if S [ i; S0 [ i 2 F , then i 2 .S [ i/ \ .S0 [ i/ 2 F , therefore
..S [ i/ \ .S0 [ i// n i D S \ S0 2 F�i.

– F�i has no macro-element: suppose K � N n i is a macro-element in F�i. Take
S 2 F�i. Then either S \ K D ; or S � K. If S 2 F , then S \ K D ; or S � K
remains true. If S [ i 2 F , then .S [ i/ \ K D ; or S [ i � K is true because
K 63 i. Hence K is a macro-element in F , a contradiction.

Then F�i is a set system containing N n i closed under intersection without macro-
element on N n i, and by the induction hypothesis, F�i is nondegenerate; i.e., the
system of equations x.S/ D 0; S 2 F�i has a unique solution x D 0. Finally, observe
that the system x.S/ D 0; S 2 F differs from the previous one only by the adjunction
of xi in some lines. Since fig 2 F , the line xi D 0makes the two systems equivalent.
Therefore, F is nondegenerate. ut

A useful result is the following.

Lemma 3.22 (Derks and Reijnierse [87]) The recession cone core.0/ of a game on
.N;F/ with N 2 F is a linear subspace if and only if F n f¿;Ng is a balanced
collection or is empty.

Proof We set Fı D F n f¿;Ng for simplicity.
(/ Suppose Fı is balanced, and take .�S/S2Fı a system of balancing weights.

Take any x 2 core.0/ and any T 2 Fı. We have

�x.T/ D x> � 1
�T

� X

S2Fı

S¤T

�S1S � 1N

�
D 1

�T

X

S2Fı

S¤T

�Sx.S/ > 0;

proving that �x is an element of core.0/. Since core.0/ is a cone, it is therefore a
linear subspace.
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)/ Suppose that core.0/ is a linear subspace. Then x 2 core.0/ implies that
�x 2 core.0/, and it follows that inequalities x.S/ > 0; S 2 Fı; x.N/ D 0 imply
the inequality x.T/ 6 0 for any T 2 Fı. From Farkas’ Lemma II (Theorem 1.7), it
follows that, for any T 2 Fı, there exist nonnegative constants �T

S for all S 2 Fı
and a real constant �T

N such that

X

S2Fı

�T
S1S C �T

N1N D �1T : (3.13)

Summing for all T’s yields

�N1N D �
X

S2Fı

1S

�
1C

X

T2Fı

�T
S

�
; (3.14)

with �N D P
T2Fı �T

N . Observe from (3.13) that �T
N < 0 for all T, hence �N < 0.

Dividing both members of Eq. (3.14) by ��N yields
X

S2Fı

1S�
0
S D 1N

with �0
S D 1CPT2Fı �T

S��N
> 0. Hence, Fı is balanced. ut

From the theory of polyhedra again, we know that the core is bounded if and only
if its recession cone reduces to f0g. Combining Lemma 3.22 and previous facts, we
find:

Theorem 3.23 (Boundedness of the core) Let v be a balanced game on a set
system F containing N. Then core.v/ is bounded if and only if F is nondegenerate
and F n f¿;Ng is balanced.

This result was proved by Derks and Reijnierse [87].

3.3.3 Extremal Rays

When the core is unbounded, it is possible to find its extremal rays in the case where
F is closed under union and intersection; i.e., basically F D O.N;�/, which is a
distributive lattice of height n (see Sect. 2.19.2). The next theorem was shown by
Tomizawa [326] (see also Fujishige [149, Theorem 3.26]), and by Derks and Gilles
[84]. We recall that for i; j 2 N, j 
� i means j 
 i and j � k � i implies k D i or
k D j.

Theorem 3.24 (Extremal rays of the core) Let F D O.N;�/ be a set system. The
recession cone of the core reads

core.0/ D cone.1f jg � 1fig W i; j 2 N such that j 
� i/:
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Proof Take i; j 2 N such that j 
� i. First, we prove that r D 1f jg � 1fig is a ray; i.e.,
r 2 core.0/. Since any S 2 F is a downset, i 2 S implies j 2 S. Hence in any case
r.S/ > 0, and r.N/ D 0.

Second, we show that core.0/ is included into the cone generated by the above
rays. We use cone duality for this purpose (see Sect. 1.3.6). We claim that for w 2
R

N , w>x is bounded for all x 2 core.0/ if w>.1f jg � 1fig/ 6 0 for all i; j 2 N such
that j 
� i. Then, by Lemma 1.10, this is equivalent to say that w>x 6 0 for all
x 2 core.0/ if w>.1f jg � 1fig/ 6 0 for all i; j 2 N such that j 
� i, which means that
the rays 1f jg � 1fig generate core.0/.

Finally, extremality of these rays is immediate because they generate core.0/ and
none of them can be written as a conic combination of the others.

PROOF OF THE CLAIM: The conditions in the claim for w read wj 6 wi for j 
� i,
hence there exists some linear extension of �; i.e., a reordering �.1/; : : : ; �.n/ of
the elements of N such that i 
 j implies �.i/ is ranked before �. j/, such that

w�.1/ 6 w�.2/ 6 � � � 6 w�.n/:

Note that by construction Fi D f�.1/; : : : ; �.i/g 2 F for i D 1; : : : ; n. Define now
the vector y 2 R

F by

yFn D �w�.n/; yFn�j D �w�.n�j/ C w�.n�jC1/ . j D 1; : : : ; n � 1/

and yF D 0 if F ¤ Fi for all i. By construction we find that yF � 0 for all F 2 F ,
F ¤ N, and

P
F3i yF D �wi, for all i 2 N. Hence, y is a feasible solution for the

linear program

min 0>z s.t. � A>z D w; zF > 0 for all F ¤ N;

with A the matrix defining the recession cone; i.e., core.0/ D fx 2 R
N W �Ax 6 0g.

Observe that this linear program is the dual of max w>x s.t. x 2 core.0/. Hence, by
weak duality, we deduce that w>x is bounded.4 ut

Note that this shows that when F is a distributive lattice, the core of a balanced
game is bounded if and only if F D 2N .

3.3.4 Extreme Points

Extreme points are known in the case where F D O.N/ and v is supermodular. In
other cases, little can be said.

We recall from Sect. 3.2.2 that marginal vectors are defined w.r.t. permutations
on N or equivalently maximal chains on 2N . Therefore, the definition of marginal

4Thanks are due to Ulrich Faigle for providing this proof.
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vectors remains unchanged provided F is regular: all maximal chains have length
n (this is in particular the case when F D O.N;�/). If F is not regular, some
alternative notion has to be found (Remark 3.33). Supposing F to be regular, we
denote by S.F/ the set of feasible permutations, i.e., those corresponding to the
maximal chains of F , and for any � 2 S.F/, the corresponding marginal vector is
denoted by x�;v . We observe that (3.9) still holds; i.e.,

x�;v.Ai/ D v.Ai/ (3.15)

for any permutation � 2 S.F/ and the sets Ai D f�.1/; : : : ; �.i/g induced by the
permutation.

The first result is a generalization of Theorem 3.14. To this end, we define
the Weber set as the convex hull of marginal vectors induced by the feasible
permutations:

Web.v;F/ D conv.fx�;v W � 2 S.F/g/:

Theorem 3.25 (Derks and Gilles [84]) Let v be a game on .N;F/ with F D
O.N;�/. Then

core.v/ � Web.v;F/C core.0/:

Proof Suppose there exists x 2 core.v/ such that x 62 Web.v;F/ C core.0/.
Since Web.v;F/ C core.0/ is a convex polyhedron, by the separating hyperplane
Theorem 1.5, there exists y 2 R

N such that

hy; xi < hy;w C ri .w 2 Web.v;F/; r 2 core.0//:

By Theorem 3.24, this implies

hy; xi < hy;wi C ˛hy; 1f jg � 1figi D hy;wi C ˛.yj � yi/ (3.16)

for all w 2 Web.v;F/, all ˛ > 0, and all i; j 2 N such that j 
� i in .N;�/. It
follows that yj > yi for all j 
� i, and by transitivity

yj > yi . j � i/: (3.17)

Suppose for ease of notation that y1 > y2 > � � � > yn (otherwise apply some
permutation), and define Ak D f1; : : : ; kg for k D 1; : : : ; n. Under these conditions,
1; 2; : : : ; n is a linear extension of .N;�/. Therefore Ak 2 F for k D 1; : : : ; n, and
these sets form a maximal chain in F , inducing the marginal vector xId;v w.r.t. the
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permutation � D Id. Letting w D xId;v and ˛ D 0 in (3.16) yields

hy; xi < hy; xId;vi D
nX

iD1

�
v.Ai/� v.Ai�1/

�
yi

D v.N/yn C
n�1X

iD1
v.Ai/.yi � yiC1

„ ƒ‚ …
>0

/

6 x.N/yn C
n�1X

iD1
x.Ai/.yi � yiC1/ D hx; yi;

a contradiction. ut
Remark 3.26 Though core.v/ D conv.ext.core.v// C core.0/, the readers
should not deduce that the convex part of the core is included in the Weber set:
conv.ext.core.v// � Web.v;F/ does not hold in general, as shown by the
following simple example.

Take N D f1; 2; 3g, F D f¿; 1; 3; 13; 123g induced by the poset 1 
 2, 3 
 2,
and consider the game v defined by v.1/ D v.3/ D v.13/ D 1, and v.123/ D 10.
Remark that v is not supermodular. There are two marginal vectors .1; 9; 0/ and
.0; 9; 1/. Now, these two marginal vectors are vertices, but there is a third vertex,
x3 D .1; 8; 1/, so it is not in the convex hull of the marginal vectors.

However, observe that x3 D .1; 8; 1/ D .1; 9; 0/C .0;�1; 1/, where .0;�1; 1/ is
an extremal ray, in accordance with Theorem 3.25. }

The next result generalizes Theorem 3.15.

Theorem 3.27 (Extreme points of the core for supermodular games) Let v be
a game on .N;F/ with F D O.N;�/. The following propositions are equivalent.

(i) v is supermodular;
(ii) x�;v 2 core.v/ for all � 2 S.F/;

(iii) core.v/ D Web.v;F/C core.0/;
(iv) ext.core.v// D fx�;v W � 2 S.F/g.

Proof ((i),(ii): see Grabisch and Sudhölter [182])
(i))(ii) Assume that v is supermodular, let S 2 F n f;g, and � 2 S.F/. We

have to show that

x�;v.S/ > v.S/: (3.18)

Let i1; : : : ; is 2 S, s D jSj, be chosen so that ��1.i1/ < � � � < ��1.is/. Then
Tk D fi1; : : : ; ikg D A��1.ik/ \ S 2 F for any k D 1; : : : ; s, using the notation of
(3.15). By supermodularity, we get:

v.A��1.ik//� v.A��1.ik/ n ik/ > v.Tk/� v.Tk�1/ for all k D 1; : : : ; s;

where T0 D ¿. Summing up all these inequalities and using (3.15) yield (3.18).
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(ii))(i) Let v be a game and assume that x�;v 2 core.v/ for all � 2 S.F/. Let
S;T 2 F so that S n T ¤ ¿ ¤ T n S, and rank the elements in N such that

N D fi1; : : : ; ik„ ƒ‚ …
S\T

; ikC1; : : : ; il
„ ƒ‚ …

TnS

; ilC1; : : : ; is
„ ƒ‚ …

SnT

; isC1; : : : ; in
„ ƒ‚ …

Nn.S[T/

g

and for any j 2 N, fi1; : : : ; ijg 2 F . Then the permutation � defined by �. j/ D ij for
any j 2 N is a linear extension. Hence

v.S/ 6
X

i2S

x�;vi D
X

i2S

�
v.A��1.i//� v.A��1.i/ n i/

�

D
rX

jD1

�
v.fi1; : : : ; ijg/� v.fi1; : : : ; ij�1g/

�C
qX

jDtC1

�
v.T [ fitC1; : : : ; ijg/

� v.T [ fitC1; : : : ; ij�1g/
�

D v.S \ T/C v.S [ T/� v.T/;

so that the proof is complete.
(ii))(iii) By (ii) and the decomposition of polyhedra, Web.v;F/ C core.0/ �

core.v/ holds. The reverse inclusion holds by Theorem 3.25.
(iii))(iv) Identical to (iii))(iv) in Theorem 3.15, thanks to (3.15).
(iv))(ii) is obvious.

ut
Remark 3.28 These results have been shown independently by several authors.
Theorem 3.25 can be found in Faigle and Kern [135, Sect. 5], and it is also
mentioned in Derks and Gilles [84], where the result is shown for acyclic permission
structures (which correspond to distributive lattices of the form O.N/; see Algaba et
al. [6]). Now, Theorem 3.27 (i))(iv) was shown by Fujishige and Tomizawa [150]
(see also Fijishige [149, Theorem 3.22]), and also by Derks and Gilles [84]. }

In the case of the more general regular set systems, the above properties do not
hold in general. The following example shows that the statement of Theorem 3.25
is no longer true in this case.

Example 3.29 (Bilbao et al. [26]) Consider the following set system (regular set
lattice but not distributive, since it contains a pentagon, figured by the red circles),
with the values of the game v given in parentheses.



166 3 The Core and the Selectope of Games

∅

(0) 1

(2) 12

123 (3)

23 (2)

3 (0)2 (0)

The core is determined by

x1 C x2 > 2

x2 C x3 > 2

x1 C x2 C x3 D 3

x1; x2; x3 > 0:

Observe that F is nondegenerate and balanced, hence the core is bounded. Its
vertices are .0; 2; 1/; .1; 2; 0/; .0; 3; 0/; .1; 1; 1/. The marginal vectors associated
with the 4 maximal chains are (0,2,1), (2,0,1), (1,0,2) and (1,2,0). Clearly, core.v/ 6�
Web.v;F/ and Web.v;F/ 6� core.v/. Þ

Theorem 3.30 Let F be a regular set system that is a set lattice,5 with infimum
and supremum ^;_, and consider a game v on .N;F/ that is monotone and
supermodular on F w.r.t _;^. Then Web.v;F/ � core.v/, and all marginal
vectors x�;v are extreme points of the core.

Proof Take some � 2 S.F/, and consider the marginal vector x�;v and the
associated maximal chain C D fS0; S1; : : : ; Sng where S0 D ¿ � S1 � � � � Sn D N.
It suffices to show that x�;v 2 core.v/; i.e, x�;v.T/ > v.T/ for all T 2 F , and
x�;v.N/ D v.N/. The latter property is immediate from the definition of marginal
vectors.

Denote by _;^ the supremum and infimum in the lattice F . If T 2 C, then
x�;v.T/ D v.T/ by (3.15). Suppose then that T 62 C. Call Sp the smallest set in C
such that T � Sp, and put fig D Sp n Sp�1. Note that T _ Sp�1 D Sp and T 3 i.

5See Remark 2.113(iii).
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Sp−1 ∧ T

T

Sp

Sp−1

Sp−2

i

We prove x�;v.T/ > v.T/ by induction on p > 2.
If p D 2, then T D fig, S1 D f jg, j ¤ i. We have v.fi; jg/C v.¿/ > v.f jg/C

v.fig/. By (3.15) and supermodularity,

x�;vi D x�;v.fi; jg/� x�;vj D v.fi; jg/� v.f jg/ > v.fig/:

Let us suppose the property true for p 6 q and prove it for p D q C 1 6 n. By
supermodularity and (3.15) again,

x�;v.Sp/� x�;v.Sp�1/C v.Sp�1 ^ T/ > v.T/;

hence x�;vi Cv.Sp�1^T/ > v.T/. By induction hypothesis, x�;v.Sp�1^T/ > v.Sp�1^
T/, hence

x�;vi C x�;v.Sp�1 ^ T/ > v.T/:

Observe that .Sp ^ T/ [ i � T. Now v monotone implies x�;v 2 R
nC, hence

x�;v.T/ > x�;vi C x�;v.Sp�1 ^ T/ > v.T/;

which is the desired result.
Finally, since (3.15) holds, each marginal vector is an extreme point because it is

the unique solution of a triangular system of n linear equalities. ut
This result was shown by Xie and Grabisch [349]. The next two examples show that
(1) Monotonicity cannot be left out, and (2) The conditions of the theorem are not
strong enough to ensure that all extreme points are marginal vectors.

Example 3.31 Consider N D f1; 2; 3; 4; 5g and the regular set lattice F depicted
in Fig. 3.1. Define v on F as follows: v.S/ D 0 for all S 2 F except v.124/ D
�1. Then v is supermodular but not monotonic. Consider the maximal chain
f¿; 1; 14; 124; 1245; 12345g. Its associated marginal vector is x D .0;�1; 0; 0; 1/.
Observe that x.123/ D �1 < v.123/, hence x 62 core.v/. Þ

Example 3.32 (Example 3.29 cont’d) Change the values of the game as follows:
v.12/ D v.23/ D 1. Then v is supermodular and the four marginal vectors are
.0; 1; 2/, .1; 0; 2/, .2; 0; 1/ and .2; 1; 0/. However, observe that .0; 3; 0/ is an extreme
point of the core, and it is not a marginal vector. Þ
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∅

3

13

123

1235

12345

1245

124

14

1

Fig. 3.1 Example of a regular set lattice (nondistributive)

Remark 3.33 Another setting was proposed by Faigle et al. [132] where the results
valid in the classical case (F D 2X) remain true: the core is included in the Weber
set and equality holds if and only if supermodularity holds. To achieve this, the
authors consider the positive core coreC.v/ of a game v on an arbitrary set system
F , which is the intersection of the core with the positive orthant. A Monge-type
algorithm (see Remark 4.99) with input vector c 2 R

N produces a list 	.c/ of
elements of F (playing the rôle of a maximal chain in F ), a list �.c/ of elements in
N (which are not necessarily permutations on N because some elements in N may
be missing), and a vector y.c/ 2 R

jF j. Letting Ov.c/ D hv; y.c/i, it is proved that
Ov.c/ is an extension of v in the sense that Ov.1S/ D v.S/ for any S 2 F , and it is the
support function of coreC.v/:

coreC.v/ D fx 2 R
N W hc; xi > Ov.c/;8c 2 R

Ng:

Next, marginal vectors x�;v are defined for each list �;	 produced by the Monge
algorithm as follows: x�;vi D 0 for each i 62 � , and for the other coordinates, x�;v is
the unique solution of the system

x.S/ D v.S/ .S 2 	/:

The Weber set is defined as the convex hull of marginal vectors, for all lists �
produced by the Monge algorithm. Defining v to be convex as Ov being concave,
the main result asserts that the positive core is included into the Weber set, with
equality if and only if v is convex.

}
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3.3.5 Faces

Faces of the core have been deeply studied in combinatorial optimization when
F D O.N;�/ (see Fujishige [149, Chap. 2, Sect. 3.3 (d)] for a detailed account).
We restrict here to basic facts.

Assuming v is a balanced game, take any x 2 core.v/ and define F.x/ D fS 2
F W x.S/ D v.S/g. Then F.x/ is a sublattice of F if v is supermodular. Indeed, first
remark that ¿;N 2 F.x/. Now, take S;T 2 F.x/ and let us prove that S [ T and
S \ T belong to F.x/. We have

x.S/C x.T/ D x.S [ T/C x.S \ T/ >

v.S [ T/C v.S \ T/ > v.S/C v.T/ D x.S/C x.T/;

which forces x.S [ T/ D v.S [ T/ and x.S \ T/ D v.S \ T/ because x 2 core.v/.
Assuming throughout this section that v is supermodular, define for any subsys-

tem D � F

F.D/ D fx W x.S/ D v.S/;8S 2 D; x.S/ � v.S/ otherwiseg
Fı.D/ D fx W x.S/ D v.S/;8S 2 D; x.S/ > v.S/ otherwiseg:

Note that F.D/ is either empty or a face of the core provided D 3 N, and that
Fı.D/ is an “open” face in the sense that it does not contain any other face of lower
dimension. Define

D D fD � F W D is a sublattice of F containing ¿;N;Fı.D/ ¤ ¿g:

Observe that any D 2 D is necessarily distributive because F is, and therefore is
generated by a poset. It is easy to see that D D fF.x/ W x 2 core.v/g. It follows
that any face of the core is defined by a distributive sublattice of F . Moreover, the
dimension of a face F.D/ is jNj � jh.D/j, where h.D/ is the height of the lattice D.

3.3.6 Bounded Faces

This section is based on papers by the author [169, 182], where the readers can find
more details. We suppose throughout that F 3 N.

Basically, finding bounded faces of the core amounts to selecting sets T1; : : : ;Tq

in F such that replacing inequalities x.Ti/ > v.Ti/ in core.v/ by equalities x.Ti/ D
v.Ti/, i D 1; : : : ; q, results in a bounded set. Let us call normal collection any
collection N D fT1; : : : ;Tqg of q < n nonempty subsets in F n fNg such that

coreN .0/ D fx 2 core.0/ W x.S/ D 0 8S 2 N g D f0g:
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Note that normal collections are determined by F , not by v.
Supposing core.v/ ¤ ¿, a normal collection N determines a bounded face of

the core, denoted by coreN .v/:

coreN .v/ D fx 2 core.v/ W x.T/ D v.T/;8T 2 N g:

Note that coreN .v/ may be empty even if core.v/ is not. The necessary and
sufficient conditions for nonemptiness are given below and are similar to the
Bondareva-Shapley theorem (Theorem 3.7). Considering a normal collection N ,
we say that a collection B � F is N -balanced if there exists yS > 0, S 2 B, such
that

P
S2B yS1S D P

S2N[N 1S. We call fySgS2B a system of N -balancing weights.

Theorem 3.34 Let N be a normal collection. coreN .v/ ¤ ¿ if and only if for
every N -balanced collection B with N -balancing weights fySgS2B , it holds

X

S2B
ySv.S/ 6

X

S2N[N

v.S/:

Proof We consider the following linear program with x 2 R
N :

min z D P
S2N[N x.S/

s.t. x.S/ > v.S/; S 2 F :

The optimal value z� of z is
P

S2N[N v.S/ if and only if coreN .v/ ¤ ;. The dual
problem reads

max w D P
S2F ySv.S/

s.t
P

S3i;S2F yS D P
S3i;S2N[N yS; i 2 N

yS > 0; S 2 F :

By the duality theorem, w� D z�, which implies that any feasible solution satisfies
P

S2F ySv.S/ 6
P

S2N[N v.S/. ut
Take any balanced game v 2 G.N;F/, with core.0/ ¤ f0g, and consider

an extremal ray r of core.0/. We say that r is deleted by T 2 F if the cone
fx 2 core.0/ W x.T/ D 0g does not contain r any more. In the case where
F D O.N;�/, there is a simple way to find sets deleting extremal rays. We recall
from Theorem 3.24 that extremal rays are of the form 1f jg � 1fig, with j 
� i.

Lemma 3.35 Suppose F D O.N;�/, F ¤ 2N, and take i; j 2 N such that j 
� i.
Then the extremal ray 1f jg � 1fig is deleted by T if and only if T 3 j and T 63 i.

Proof () Take T 2 F such that T 3 j and T 63 i. Then .1f jg � 1fig/.T/ D 1, hence
1f jg � 1fig does not belong to core.0/\ fx.T/ D 0g.

)) Suppose 1f jg � 1fig 62 core.0/ \ fx.T/ D 0g. Since 1f jg � 1fig is a ray of
core.0/, it implies that .1f jg � 1fig/.T/ ¤ 0; i.e., 1f jg.T/ ¤ 1fig.T/. Therefore either
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i or j belongs to T, but not both. Because j 
� i and T is a downset, it must be j 2 T
and i 62 T. ut
This result gives in principle a systematic way of building normal collections,
however the search of normal collections is highly combinatorial, as illustrated by
the following example.

Example 3.36 Consider the set system F of Fig. 2.3 built on N D f1; 2; 3; 4g
endowed with the partial order 1 
 2; 3 
 2; 3 
 4. There are three extremal
rays .1;�1; 0; 0/, .0;�1; 1; 0/ and .0; 0; 1;�1/. The simplest normal collection is
N1 D ff1; 3gg, but N2 D ff1g; f3gg, N3 D ff1g; ff1; 3gg, N4 D ff3g; f1; 3gg,
N5 D ff1g; f3g; f1; 3gg, N6 D ff1g; f1; 2; 3g; f3; 4gg, N7 D ff1; 2; 3g; f1; 3; 4gg,
etc., are also possible. Þ

The following fact is noteworthy.

Lemma 3.37 Suppose F D O.N;�/, F ¤ 2N. Any normal collection contains at
least h.N;�/ sets, where h.N;�/ is the height of .N;�/.
Proof Take N a normal collection and denote h.N;�/ by h.N/ for simplicity. By
definition of the height, there exists a maximal chain in .N;�/ of length h.N/
going from a minimal element to a maximal element, say i0; i1; : : : ; ih.N/. Then
by Theorem 3.24, 1fi0g � 1fi1g, . . . , 1fih.N/�1g � 1fih.N/g are extremal rays. Because
1fi0g � 1fi1g is deleted, by Lemma 3.35 N must contain a set K1 such that i0 2 K1
and i1 62 K1. Moreover, since K1 must be a downset, i2; : : : ; ih.N/ cannot belong to
K1. Similarly, there must exist a set K2 deleting ray 1fi1g � 1fi2g such that i1 2 K2
and i2; : : : ; ih.N/ 62 K2. Therefore, K1 ¤ K2. Continuing this process we construct
a sequence of distinct h.N/ subsets K1;K2; : : : ;Kh.N/, the last one deleting ray
1fih.N/�1g � 1fih.N/g. Therefore, at least h.N/ equalities are needed. ut

We introduce the following terminology for normal collections: a normal collec-
tion is minimal if no subcollection is normal; a normal collection is short if it has
cardinality h.N;�/; a normal collection is nested if it is a chain in F .

Example 3.38 (Example 3.36 cont’d) N1;N2;N6 are minimal, but only N1 is short,
and only N1 is nested. Þ

Nested normal collections have interesting properties. In particular, they permit
to define special marginal vectors. Suppose that F D O.N;�/ and consider
N a nested normal collection, and a feasible permutation � 2 S.F/ (linear
extension of �). We say that � is compatible with N if the induced maximal
chain f¿;A1;A2; : : : ;Ang with Ai D f�.1/; : : : ; �.i/g, contains N . We may denote
by S.F ;N / the set of feasible permutations compatible with N . The following
fundamental fact is immediate.

Lemma 3.39 Suppose F D O.N;�/, N is a nested normal collection, and take
� 2 S.F ;N /. Then the marginal vector x�;v is an extreme point of the bounded
face coreN .v/ if v is supermodular.
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Proof By Theorem 3.27, we know that x�;v 2 core.v/ and is moreover an extreme
point of it. By (3.15), x�;v satisfies x�;v.T/ D v.T/ for every T 2 N , hence it belongs
to coreN .v/. ut
The following fact is also noteworthy.

Lemma 3.40 Let F D O.N;�/ and N D fT1; : : : ;Tqg be a normal nested
collection for game v on .N;F/. Then Tk n Tk�1 is an antichain in .N;�/ for
k D 1; : : : ; q, with T0 D ¿.

Proof If Tk nTk�1 is not an antichain, then there exist i; j 2 Tk nTk�1 such that j 
� i.
Because N is nested, no set in N contains j and not i. Then by Lemma 3.35, the ray
1f jg � 1fig is not deleted by N . ut

We introduce the union of all bounded faces of the core, called the bounded core:

coreb.v/ D
[

N
coreN .v/:

In the above expression, it could happen that many bounded faces coreN .v/
are empty, and that many of them are redundant because included into other
bounded faces. When the game is supermodular, it is possible to get an irredundant
expression where each face is nonempty, by simply considering minimal nested
normal collections. We call MNNC the set of minimal nested normal collections.

Theorem 3.41 (Maximal bounded faces of the core) Let v be a game on F D
O.N;�/, and assume it is supermodular. The following holds.

(i) For any nested normal collection N , coreN .v/ ¤ ¿: Moreover, if v is
strictly supermodular,6 then coreN .v/ ¤ ¿ if and only if N is nested, and
dimcoreN .v/ D n � jN j � 1:

(ii)

coreb.v/ D
[

N2MNNC.F/
coreN .v/:

Moreover, no term in the union is redundant if v is strictly supermodular.

Proof (i) The first statement comes from Lemma 3.39.
Suppose now strict supermodularity of v, and let N be a normal collection that

is not nested. Hence, there exist S;T 2 N such that S n T ¤ ¿ ¤ T n S. By strict
convexity, v.S/Cv.T/ < v.S [T/Cv.S \T/, so that any y 2 R

N with y.S/ D v.S/
and y.T/ D v.T/ either satisfies y.S \ T/ < v.S \ T/ or y.S [ T/ < v.S [ T/. We
conclude that coreN .v/ D ¿.

6That is, v.S [ T/C v.S \ T/ > v.S/C v.T/ whenever S n T and T n S are nonempty.
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It remains to prove the assertion on the dimension. Let

x D 1

jS.F ;N j
X

�2S.F ;N /

x�;v : (3.19)

Since v is strictly supermodular, it suffices to prove that x.S/ > v.S/ for all S 2
F n .N [ f¿;Ng/. Let N [ f¿;Ng D fT0; : : : ;Trg such that T0 D ¿ � T1 � � � � �
Tr D N. Suppose there exists j 2 f1; : : : ; r � 1g such that Tj n S ¤ ¿ ¤ S n Tj, then

v.S/C v.Tj/ < v.S \ Tj/C v.S [ Tj/ 6 x.S \ Tj/C x.S [ Tj/

D x.S/C x.Tj/ D x.S/C v.Tj/

by strict convexity and because x 2 core.v/. Otherwise there exists ` 2 f0; : : : ; r �
1g such that T` � S � T`C1. Let S0 D T` [ .T`C1 n S/. Note that because T`C1 n T`
is an antichain by Lemma 3.40, S0 2 F . Then there exists e� 2 S.F ;N / such that
S0 D fe�.1/; : : : ;e�.jS0j/g; i.e., xe�;v.S0/ D v.S0/. By strict convexity we conclude
that xe�;v.S/ > v.S/. For any � 2 S.F ;N /, x�;v.S/ � v.S/; hence x.S/ > v.S/.

(ii) We claim that under supermodularity, for any normal collection N , there
exists a nested normal collection N 0 such that coreN .v/ � coreN 0.v/.

PROOF OF THE CLAIM: consider N ¤ ¿, and take T;T 0 2 N . Let us show that
N 0 D .N nfT;T 0g/[fT [T 0;T \T 0g is (a) normal and (b) coreN .v/ � coreN 0.v/.
In view of Lemma 3.35, in order to show (a) it suffices to prove that for any i; j 2 N,
j 
� i, and j 2 T 63 i, either i 62 T [ T 0 or j 2 T \ T 0. Now, if i 2 T [ T 0, then
j 2 T 0 since it is a downset. Hence j 2 T \ T 0 in this case. In order to show (b) let
x 2 coreN .v/, and show that x.T [ T 0/ D v.T [ T 0/ and x.T \ T 0/ D v.T \ T 0/.
As v is supermodular,

v.T [ T 0/C v.T \ T 0/ 6 x.T [ T 0/C x.T \ T 0/

D x.T/C x.T 0/ D v.T/C v.T 0/ 6 v.T [ T 0/C v.T \ T 0/

so that the desired equalities follow immediately. Finally, an inductive argument
that we omit shows that applying to N 0 the same transformation (that is, removing
T;T 0 and replacing them by their union and intersection) at most f . f �1/

2
times, where

f D jF j, we get a collection containing a nested collection. �
Because minimal normal collections give largest bounded faces, the first state-

ment is proved. In order to show the final statement, let v be strictly supermodular
and let x be defined by (3.19). We have seen that x.S/ D v.S/ if and only if
S 2 N [ f¿;Ng so that there is no other minimal normal collection N 0 with
x 2 coreN 0.v/. ut
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Remark 3.42 The bounded core was proposed by Grabisch and Sudhölter [181].
Equivalently, the bounded core is the set of all elements in core.v/ that satisfy the
following condition for any i; j 2 N such that i 
� j: There is no � > 0 such that
x C �

�
1f jg � 1fig

� 2 core.v/.

3.4 Exact Games, Totally Balanced Games, Large Cores
and Stable Sets

In this section we consider games defined on .N; 2N/ again. Let v be such a game,
we introduce the set of its acceptable vectors A.v/:

A.v/ D fx 2 R
N W x.S/ > v.S/;8S 2 2Ng:

Clearly, A.v/ is a nonempty convex closed polyhedron bounded from below.
Observe that it has minimal elements; i.e., elements y 2 A.v/ such that x 6 y
and x 2 A.v/ imply x D y. Indeed, any core element is a minimal element: suppose
core.v/ ¤ ¿ and x 2 core.v/ is not minimal in A.v/. Then there exists y 2 A.v/
with yi 6 xi for all i 2 N, with at least one strict inequality. Then y.N/ < v.N/, a
contradiction with y 2 A.v/. Now, if core.v/ D ¿, it suffices to increase v.N/ so as
to make core.v/ ¤ ¿.

Let us denote by A.v/ the set of minimal elements of A.v/. As established just
above for any game v on 2N ,

core.v/ � A.v/: (3.20)

For any S 2 2N n f¿g, the subgame vS is the restriction of v to 2S: vS W 2S ! R,
T � S 7! vS.T/ D v.T/.

We introduce the following notions.

Definition 3.43 Let v be a balanced game on .N; 2N/; i.e., core.v/ ¤ ¿.

(i) The lower envelope of v is the game v� on .N; 2N/ defined by

v�.S/ D min
x2core.v/

x.S/ .S � N/I

(ii) v is exact if for every S 2 2N n f¿g, there exists a core element x 2 core.v/
such that x.S/ D v.S/; i.e., v� D v;

(iii) v is totally balanced if every subgame vS, S 2 2N n f¿g, is balanced;
(iv) v has a large core if for every y 2 A.v/, there exists a core element x 2 core.v/

such that x 6 y.

Several easy connections can be established.
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Lemma 3.44 Let v be a balanced game on .N; 2N/. The following holds.

(i) v� > v, v�.N/ D v.N/, and core.v�/ D core.v/;
(ii) If v is exact, then v is totally balanced;

(iii) If v is supermodular, then v is exact;
(iv) v has a large core if and only if A.v/ D core.v/.

Proof

(i) v� > v and v�.N/ D v.N/ are obvious and imply that core.v�/ � core.v/.
Now, any z 2 core.v/ satisfies z.S/ > minx2core.v/ x.S/ D v�.S/ for all ¿ ¤
S � N, which in view of v�.N/ D v.N/ D z.N/, proves the reverse inclusion.

(ii) Take S 2 2S n f¿g and consider x 2 core.v/ such that x.S/ D v.S/. Clearly,
xjS 2 core.vS/, hence v is totally balanced.

(iii) Take S 2 2N n f¿g and a permutation � on N such that S D f�.1/; : : : ; �.jSj/g.
By (3.9) we know that the marginal vector x�;v satisfies x�;v.S/ D v.S/. Since
v is supermodular, by Theorem 3.15(ii), x�;v 2 core.v/.

(iv) Suppose v has a large core. By (3.20), it remains to show that any minimal
element x of A belongs to core.v/. Suppose per contra that x 62 core.v/. Then
x.N/ > v.N/. Since v has a large core, there exists a core element z such that
z 6 x, z ¤ x, a contradiction with the minimality of x.

Suppose A.v/ D core.v/ and take y 2 A.v/. Then there exists x 2 A.v/ such that
x 6 y, and by assumption x is a core element. ut

The totally balanced cover of a game v on .N; 2N/ is the game tbc.v/ on .N; 2N/

defined by

tbc.v/.S/ D max
n X

T2BS

�Tv.T/ W BS is a balanced collection of S

and .�T/T2BS is a system of balancing weights
o
;

for S 2 2N n f¿g, and tbc.v/.¿/ D 0. We show some properties of the totally
balanced cover.

Lemma 3.45 Let v be a game on .N; 2N/. The following holds.

(i) tbc.v/ > v;
(ii) tbc.v/ is totally balanced;

(iii) v is balanced if and only if tbc.v/.N/ D v.N/;
(iv) v0 totally balanced and v0 > v imply v0 > tbc.v/;
(v) v is totally balanced if and only if v D tbc.v/. Hence tbc.tbc.v// D tbc.v/;

(vi) If v is balanced, then core.v/ D core.tbc.v//, and A.v/ D A.tbc.v//. Hence
core.v/ is large if and only if core.tbc.v// is large.

Proof

(i) Obvious because fSg is a balanced collection of S with weight 1.
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(ii) Take S 2 2N nf¿g and B0S a balanced collection on S with a system of balancing
weights .�T/T2B0S . Denote byB.T/ the set of balanced collections on ¿ ¤ T �
N. We have

X

T2B0S
�Ttbc.v/.T/ D

X

T2B0S
�T max

BT 2B.T/

X

K2BT

ıKv.K/ D
X

T2B0S
�T

X

K2B�

T

ıT
Kv.K/

D
X

K2S
T2B0S

B�

T

�Tı
T
Kv.K/ 6 max

BS2B.S/

X

T2BS

�0
Tv.T/ D tbc.v/.S/:

The inequality holds because
S

T2B0S B
�
T is a balanced collection with balancing

weights �Tı
T
K , as it can be checked.

(iii) Suppose v is balanced. Then by Definition 3.6 and (i),

v.N/ > tbc.v/.N/ > v.N/:

Now, suppose v.N/ D tbc.v/.N/. Then v.N/ >
P

S2B �Sv.S/ for all balanced
collection B of N with balancing weights �S; i.e., v is balanced.

(iv) Take S � N; S ¤ ¿. Since v0 is totally balanced, core.v0
S/ ¤ ¿, hence for any

balanced collection BS on S with balancing weights .�T/T2BS , we have

v0.S/ >
X

T2BS

�Tv
0.T/ >

X

T2BS

�Tv.T/:

This proves v0.S/ > tbc.v/.S/.
(v) Let ¿ ¤ S � N. Then tbc.vS/ D tbc.v/jS. Hence the equivalence holds

by (iii), and the last assertion follows from (ii).
(vi) Suppose v is balanced. Take x 2 core.v/. By (iii), x.N/ D v.N/ D tbc.v/.N/.

It remains to show x.S/ > tbc.v/.S/ for every S � N. Take any such S. We
have for every balanced collection BS of S with balancing weights �T :

x.S/ D
X

T2BS

�Tx.T/ >
X

T2BS

�Tv.T/;

hence x.S/ > tbc.v/.S/, and we have shown core.v/ � core.tbc.v//. Now,
the converse inclusion is obvious by (i) and the fact that v.N/ D tbc.v/.N/.
The assertions on A.v/ and largeness follow trivially.

ut
Theorem 3.46 If v is totally balanced and has a large core, then v is exact.

Proof Take any S 2 2N n f¿g and zS 2 core.vS/. We can extend zS to a vector z D
.zS; zNnS/ in R

N so that z 2 A.v/. Since v has a large core, there exists x 2 core.v/
such that x 6 z. Then v.S/ 6 x.S/ 6 z.S/ D v.S/. Hence x is a core element
satisfying x.S/ D v.S/. ut
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From the above result and Lemma 3.45 (ii) and (vi), we obtain:

Corollary 3.47 (Sharkey [302]) If v has large core, tbc.v/ is exact.

Remark 3.48

(i) Exact games have been introduced by Schmeidler [285], while lower envelopes
play an important rôle in decision theory (see, e.g., Walley [341] and
Sect. 5.3.5).

(ii) Totally balanced games and totally balanced covers have been introduced by
Shapley [300] in order to characterize market games, which model exchange
economies.

(iii) The notion of large core was introduced by Sharkey [302]. Van Gellekom et
al. [330] have shown that largeness of the core is a prosperity property: let
v be a game on .N; 2N/ and call v0 its restriction to 2N n fNg. A property P
on games is a prosperity property if for each v0 there exists a real number
˛.v0/ >

P
i2N v.fig/ such that v has property P if and only if v.N/ >

˛.v0/. In words, the property (like largeness of the core) can be made true
if v.N/ is large enough. Many properties of games are prosperity properties:
balancedness, supermodularity for partitions (Definition 3.49), stability of the
core (see Definition 3.53), extendability (see Definition 3.55), etc. On the other
hand, exactness, total balancedness, and supermodularity are not prosperity
properties.

(iv) As shown by Biswas et al. [31], for n D 3 and 4, every exact game has a large
core. However for n > 5, this property does not hold any more.

(v) Biswas et al. [31] have shown further properties for the particular case of
symmetric games. If v is totally balanced and symmetric, exactness, largeness
of the core, and stability of the core are all equivalent properties.

}
We introduce now a weaker notion of supermodularity.

Definition 3.49 (Sharkey [302]) Consider a partition � D .P1; : : : ;Pk/ of N and a
family Q D fQ1; : : : ;Qkg of subsets of N satisfying

Qi �
i�1[

jD0
Pj; and Qk [ Pk ¤ N; where Po D ¿:

A game v is said to be supermodular for partitions if for all such collections � and
Q, it holds

kX

iD1

�
v.Pi [ Qi/ � v.Qi/

�
6 v.N/: (3.21)

Remark 3.50 This notion was introduced by Sharkey under the name of subconvex-
ity.
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Lemma 3.51 If a game v on .N; 2N/ is supermodular, then it is supermodular for
partitions.

Proof Let us show by induction that
P`

iD1
�
v.Pi [ Qi/�v.Qi/

�
6 v.P1 [ � � �[ P`/,

for ` D 1; : : : ; k. The desired result follows with ` D k.
The claim is trivially true for ` D 1 because Q1 D ¿. Assume it is true for ` < k

and let us show it for `C 1.

`C1X

iD1

�
v.Pi [ Qi/� v.Qi/

� D
X̀

iD1

�
v.Pi [ Qi/ � v.Qi/

�C v.P`C1 [ Q`C1/ � v.Q`C1/

6 v.P1 [ � � � [ P`/C v.P`C1 [ Q`C1/ � v.Q`C1/

6 v.P1 [ � � � [ P`C1/

where the last inequality comes from supermodularity of v and Q`C1 � P1[� � �[P`.
ut

Theorem 3.52 (Sharkey [302]) If v is supermodular for partitions, then it has a
large core.

Proof Let y 2 A.v/ and choose x 2 A.v/ such that x 6 y. For each i 2 N, choose
Si 3 i such that x.Si/ D v.Si/ (always possible because x is a minimal element of
A.v/). Define

Pi D Si n
i�1[

jD1
Sj; Qi D Si \

i�1[

jD1
Sj;

for i D 1; : : : ; n, where S0 D ¿. By construction, Pi [ Qi D Si,
Sn

iD1 Pi D N,
Qi � Si�1

jD0 Pi, and Pi \ Pj D ¿ if i ¤ j. Hence P1; : : : ;Pn form a covering of
N with disjoint sets, and discarding empty sets in this family we get a partition
� D fP1; : : : ;Pkg (after renumbering) and the family Q D fQ1; : : : ;Qkg of
corresponding sets. If Pi [ Qi D N for some i, then x.N/ D v.N/, and the desired
result follows. Otherwise, supermodularity for partitions yields

x.N/ D
kX

iD1
.x.P0

i [ Q0
i/� x.Q0

i//

D
kX

iD1
.v.P0

i [ Q0
i/� x.Q0

i//

6
kX

iD1
.v.P0

i [ Q0
i/ � v.Q0

i// 6 v.N/:

Therefore the core of v is large. ut
Consequently, due to Lemma 3.51, supermodular games have a large core. Fig-
ure 3.2 summarizes the relative position of the classes of games introduced so far.
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large core

totally balanced

exact

supermodular

supermodular
for partitions

Fig. 3.2 Relations between the different classes of games

Largeness of the core is also related to its stability.

Definition 3.53 Let v be a game on .N; 2N/, and consider the set I.v/ D fx 2 R
N W

xi > v.fig/; i 2 N; x.N/ D v.N/g (set of imputations).

(i) Let x; y 2 I.v/ and ¿ ¤ S � N. We say that x dominates y via S if xi > yi for
all i 2 S and x.S/ 6 v.S/. Also, x dominates y if it dominates y via some set
S � N.

(ii) A subset C.v/ � I.v/ of imputations is stable if every imputation outside C.v/
is dominated by an element of C.v/, and if no element of C.v/ dominates
another element of C.v/.

Obviously, when core.v/ is nonempty, no core element can be dominated by another
imputation, hence every stable set contains the core. Moreover, no core element can
dominate another core element. However, it is not always true that the core is itself
a stable set because some imputations outside the core may be undominated. If the
core is stable, then it is the unique stable set.

Theorem 3.54 (Sharkey [302]) If a game v on .N; 2N/ has a large core, then the
core is stable, and is therefore the unique stable set.

Proof Assume core.v/ is large and take an imputation x not in the core. Let S be a
minimal subset such that x.S/ < v.S/. Choose y 2 A.v/ such that

yi D xi C v.S/� x.S/

jSj .i 2 S/:

Since the core is large, there exists z 2 core.v/ such that z 6 y. Then z.S/ D v.S/,
zi D yi > xi for all i 2 S; i.e., z dominates x via S. ut
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The notion of extendability introduced by Kikuta and Shapley [208] is also
related to stability and largeness.

Definition 3.55 A balanced game v on .N; 2N/ is extendable if for every nonempty
S � N such that core.vS/ ¤ ¿, and every y 2 core.vS/, there exists x 2 core.v/
such that xjS D y.

Theorem 3.56 (Kikuta and Shapley [208]) Let v be a balanced game on .N; 2N/.
If core.v/ is large, then v is extendable. If v is extendable, then core.v/ is stable.

Proof Suppose v has a large core, take S � N such that core.vS/ ¤ ¿, and take
xS 2 core.vS/. Consider the (nonempty) set of y 2 A.v/ such that yjS D xjS, and
take a minimal element y0 of this set. Observe that y0 2 A.v/ because there is no
y00 2 A.v/ with y00 6 y with at least one strict inequality for i 2 S. Therefore
y0 2 core.v/ because v has a large core (Lemma 3.44).

Suppose now that v is extendable. Take an imputation x 62 core.v/, and choose a
minimal S � N such that x.S/ < v.S/. Define x0 2 R

S by

x0
i D xi C v.S/� x.S/

jSj .i 2 S/:

Then x0 satisfies x0.S/ D v.S/ and x0.T/ > v.T/ for all T � S. Hence x0 2 core.vS/,
and it can be extended to a vector x00 2 R

N in the core of v. Now, x00 dominates x
via S. ut
Remark 3.57

(i) The notion of stable set was proposed by von Neumann7 and Morgenstern8

[333]. Van Gellekom et al. [330, Sect. 4.1, Example 1] have proved that the
converse of Theorem 3.54 is false in general, by providing a counterexample
with n D 6. However, the converse holds for n 6 5, as proved by Estévez-
Fernández [125]. Biswas et al. [32] have improved the result of Kikuta and
Shapley by providing a stronger notion of extendability, which happens to be
equivalent to largeness of the core. They also proved that extendability in the
ordinary sense is equivalent to largeness when n 6 5.

(ii) Extendability is far from being a necessary condition for core stability.
Shellshear and Sudhölter have proposed a weaker notion, called vital-exact
extendability, which implies core stability [303, Theorem 3.3].

7John von Neumann (Budapest, 1903 – Washington, 1957) is a Hungarian and American
mathematician and physicist. He made important contributions in logic and set theory, in quantum
physics, computer sciences, economics, etc. He is also considered to be the father of game theory
and general equilibrium with Oskar Morgenstern.
8Oskar Morgenstern (Görlitz, 1902 – Princeton, 1977) is a German and American mathematician
and economist. He is the founder of game theory, with J. von Neumann.
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(iii) Other characterizations of largeness have been provided by Estévez-Fernán-
dez [125]. One is based on linear programming by relating largeness to basic
solutions (i.e., extreme points of the core). The second one is based on minimal
covers, a kind of generalization of balanced collections.

}

3.5 The Selectope

In the whole section, we consider games defined on .N; 2N/. We define formally
a value as a mapping  W G.N/ ! R

N , which to each game assigns a n-dim
vector (interpreted as a payoff vector in game theory). We have already seen in
Chap. 2 two well-known values, namely the Shapley value and the Banzhaf value
(see Remark 2.43).

A selector is a mapping ˛ W 2N n f¿g ! N such that S 7! ˛.S/ 2 S. In words,
a selector selects an element in each nonempty subset of N. We denote by S.N/ the
set of selectors defined on .N; 2N/. Given a game v on .N; 2N/ and a selector ˛, we
define the associated selector value ˛.v/ 2 R

N as

˛i .v/ D
X

S W˛.S/Di

mv.S/ .i 2 N/; (3.22)

where mv is the Möbius transform of v. Referring to the interpretations given in
Sect. 3.1, ˛.v/ represents either a payoff vector for all players in N, or a probability
distribution compatible with v viewed as an uncertainty measure (capacity).

Definition 3.58 Let v be a game on .N; 2N/. The selectope of v is the convex
closure of all selector values:

sel.v/ D conv.˛.v/ W ˛ 2 S.N//:

We now identify an important subfamily of selectors, whose selector values
coincide with marginal vectors. Let � be a permutation on N, v a game on .N; 2N/

and consider the marginal vector x�;v [see (3.8)]. Expressing x�;v in terms of mv we
find

x�;v�.i/ D
X

S�Ai;S3�.i/
mv.S/ .i 2 N/;

with Ai D f�.1/; : : : ; �.i/g. Since �.i/ is the element of highest rank in Ai, it follows
that x�;v corresponds to the selector value ˛ where ˛ is the selector selecting
the element of highest rank (according to �) in each subset S. It follows that any
marginal vector of v belongs to the selectope of v.
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All selectors corresponding to marginal vectors can be characterized by a simple
property: a selector ˛ is consistent if for any S;T 2 2N n f¿g such that S � T and
˛.T/ 2 S, we have ˛.S/ D ˛.T/.

Lemma 3.59 A selector ˛ is consistent if and only if its selector value ˛.v/ is a
marginal vector of v, for any game v on .N; 2N/.

Proof )/ Supposing ˛ consistent, build a permutation � as follows: put �.n/ D
˛.N/, then �.n�1/ D ˛.N nf�.n/g/, �.n�2/ D ˛.N nf�.n/; �.n�1/g/, etc. Since
˛ is consistent, the selector ˛ choose �.i/ in any subset containing �.i/, hence the
corresponding selector value is the marginal vector x�;v .

(/ By the above property, if ˛.T/ D i D �. j/ 2 S � T, then ˛.S/ D �. j/
too. ut

We give now an explicit expression of the elements of the selectope through the
notion of sharing system. A sharing system on N is a function � W 2N � N ! Œ0; 1�

satisfying the following conditions:

(i)
X

i2B

�.B; i/ D 1 for all ¿ ¤ B � N;

(ii) �.B; i/ D 0 whenever i 62 B.

In words, a sharing system indicates which proportion should be given to each
element of a subset of N. We denote by ƒ.N/ the set of all sharing systems on
N. A given sharing system � induces a value, called sharing value, and defined by

�i .v/ D
X

S3i

�.S; i/mv.S/ .i 2 N/:

Any selector ˛ corresponds to some particular sharing system �˛, by the following
relation

�˛.S; i/ D
(
1; if ˛.S/ D i

0; otherwise.

Evidently, we have the identity ˛ D �˛ , which permits to show the following
relation.

Lemma 3.60 For any game v on N,

sel.v/ D f�.v/ W � 2 ƒ.N/g:

Proof Consider for any v a convex combination ˇ1˛1.v/ C � � � C ˇq
˛q.v/ of

selector values. Define the following sharing system �:

�.S; i/ D
X

k2f1;:::;qg W˛k.S/Di

ˇk .¿ ¤ S � N; i 2 S/;
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and �.S; i/ D 0 if i 62 S. Then � is indeed a sharing system because for every
nonempty S

X

i2S

�.S; i/ D
X

i2S

X

k2f1;:::;qg W˛k.S/Di

ˇk D
qX

kD1
ˇk D 1:

Then by construction we have ˇ1˛1.v/C � � � C ˇq
˛q.v/ D �.v/.

To prove the converse, because ˛; � are values that are linear on G.N/, it
suffices to prove the result for any unanimity game uT , ¿ ¤ T � N. Take some
sharing system � and consider �.uT/ for some nonempty T � N. Since muT is
nonzero only for T, we simply put

ˇ1 D �.T; i1/; : : : ; ˇjTj D �.T; ijTj/

with T D fi1; : : : ; ijTjg. Then the coefficients ˇ1; : : : ; ˇjTj define a convex combina-
tion, and letting ˛j.T/ D ij for j D 1; : : : ; jTj, we have

ˇ1
˛1.uT/C � � � C ˇjTj˛jTj.uT/ D �.uT/:

ut
Example 3.61 (The Shapley value is the uniform sharing value) Apart from
selectors that choose in each subset S only one element and are thus very specific
sharing systems, another remarkable instance of a sharing system is the uniform
sharing system, which allocates to every element in S the same quantity mv.S/

jSj . The
corresponding sharing value is then

i.v/ D
X

S3i

mv.S/

jSj .i 2 N/:

Comparing with (2.41) taking A D fig and remembering that the Shapley value
corresponds to the interaction transform for singletons, one realizes that the uniform
sharing value is nothing but the Shapley value.

By contrast, the Banzhaf value is not a sharing value as one can see from (2.47)
with A D fig. Indeed, the underlying sharing system would be given by �.S; i/ D
1
2

jSj�1
, so that

P
i2S �.S; i/ ¤ 1, unless jSj D 2. Þ

The next theorem gathers the main properties of the selectope. Beforehand, for
any game v on N, we define the game v� D vC � v�, where vC; v� are defined by
(2.53), (2.54), and � indicates conjugation; see (2.1) (recall that v D vC � v� and
that vC; v� are totally monotone, hence supermodular).
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Theorem 3.62 (Main properties of the selectope) For any game v on N, the
following holds:

(i) v� is supermodular and sel.v/ D core.vC/ � core.v�/ D core.v�/;
(ii) core.v/ � Web.v/ � sel.v/;

(iii) core.v/ D sel.v/ if and only if mv.S/ > 0 for all S � N, jSj > 1;
(iv) sel.v/ D Web.v/ if and only if all permutations � are consistent9 in v;
(v) Let DC.v/ D SfS W jSj > 1;mv.S/ > 0g be the set of elements in N that

belong to non-singleton coalitions with positive Möbius transform, and define
D�.v/ similarly. Then, if jDC.v/ \ D�.v/j 6 1, sel.v/ D Web.v/.

Proof

(i) Step 1: We first prove that sel.vC/ D core.vC/ and sel.v�/ D core.v�/. Since
vC is supermodular, by Theorem 3.15, it is the convex hull of all marginal
vectors, hence core.vC/ � sel.vC/. Consider now any selector value ˛ . We
have, for any nonempty coalition S,

˛.vC/.S/ D
X

i2S

X

T W˛.T/Di

mvC

.T/

>
X

T�S

mvC

.T/ D vC.S/;

where the inequality follows by nonnegativity of mvC

. This proves sel.vC/ �
core.vC/, and thus the desired equality holds. The equality for v� is obtained
in the same way.

Step 2: We prove the first equality sel.v/ D core.vC/ � core.v�/. By
linearity of the sharing value, we have, for any selector ˛, ˛.v/ D ˛.vC/�
˛.v�/, hence by Step 1, ˛.v/ 2 core.vC/ � core.v�/, which proves
sel.v/ � core.vC/� core.v�/. For the reverse inclusion, it is enough by Step
1 to prove that ˛.vC/ � ˇ.v�/ 2 sel.v/ for arbitrary selectors ˛; ˇ. Define
the selector � by �.S/ D ˛.S/ if mv.S/ > 0 and �.S/ D ˇ.S/ otherwise. Then
sel.v/ 3 �.v/ D ˛.vC/� ˇ.v�/.

Step 3: We prove the second equality core.vC/ � core.v�/ D core.v�/.
We have noted that vC is supermodular. Since v� is supermodular too, �v� is
submodular and by Theorem 2.20(ii), �v� D �v� is supermodular, and so is
v�. It follows from Theorem 3.17(iii) that

core.v�/ D core.vC � v�/ D core.vC/C core.�v�/:

The desired equality follows by the relation �core.�v/ D core.v/ [see (3.2)].

9A permutation � is consistent in v if it is possible to find a consistent selector ˛ satisfying ˛.T/ D
max� .T/ for all T such that mv.T/ > 0 and ˛.T/ D min� .T/ for all T such that mv.T/ < 0, where
max� .T/ is the last element (highest rank) in T according to � , and similarly for min� .T/.
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(ii) The first inclusion is proved in Theorem 3.14. As for the second, we have
already observed that any marginal vector of v belongs to the selectope of v.

(iii) Suppose equality between the core and the selectope. In particular, this implies
that every element x of the selectope satisfies xi > v.fig/ for all i 2 N. Assume
that there exists S � N, jSj > 1 such that mv.S/ < 0. Choose i 2 S and let ˛
be a selector satisfying ˛.S/ D i and ˛.T/ ¤ i for every T ¤ S; fig. Then

˛i .v/ D v.fig/C mv.S/ < v.fig/;

a contradiction.
Conversely, suppose that mv.S/ > 0 for all S � N, jSj > 1. Then core.v/ D

core.vC � v�/ D core.vC/ � core.v�/ D sel.v/, where the second equality
holds by Theorem 3.17(iii) and (3.2), because �v� is an additive game, and
the third one follows by (i).

(iv) (/ By (i), any marginal vector x�;v
�

of v� is an extreme point of sel.v/.
Moreover,

x�;v
�

�.i/ D v�.f�.1/; : : : ; �.i/g/ � v�.f�.1/; : : : ; �.i � 1/g/
D vC.f�.1/; : : : ; �.i/g/� vC.f�.1/; : : : ; �.i � 1/g/

C v�.f�.i C 1/; : : : ; �.n/g/� v�.f�.i/; : : : ; �.n/g/
D

X

T�f�.1/;:::;�.i/gWmv.T/>0
T3�.i/

mv.T/C
X

T�f�.i/;:::;�.n/gWmv.T/<0
T3�.i/

mv.T/: (3.23)

Denoting by max� .T/ the last element in T according to � , and similarly for
min� .T/, it follows that for any selector ˛ satisfying ˛.T/ D max� .T/ for all
T such that mv.T/ > 0 and ˛.T/ D min� .T/ for all T such that mv.T/ < 0, we
have x�;v

� D ˛.v/. Since � is consistent in v, it is always possible to choose
such an ˛ that is consistent. By Lemma 3.59, ˛ is a marginal value of v; i.e.,
˛ D x�;v for some permutation � . By assumption, any � is consistent in v, so
that Web.v/ � sel.v/, implying the desired equality by (ii).

)/ Suppose that there exists a permutation � that is not consistent in v
(w.l.o.g. we may assume that this is the identity permutation). Take p 2 R

N

with p1 < p2 < � � � < pn. Let ˛ be a consistent selector such that p � ˛.v/
is maximal subject to all consistent selectors. Because � is not consistent in
v, we can take a coalition S with either ˛.S/ ¤ max� .S/ and mv.S/ > 0, or
˛.S/ ¤ min� .S/ and mv.S/ < 0. Define ˛0 by ˛0.S/ D max� .S/ if mv.S/ > 0

or ˛0.S/ D min� .S/ if mv.S/ < 0, and ˛0.T/ D ˛.T/ for any T ¤ S. If
mv.S/ > 0, we have

p � ˛0

.v/ D p � ˛.v/C .pmax� .S/ � p˛.S//m
v.S/ > p � ˛.v/;
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and if mv.S/ < 0, then

p � ˛0

.v/ D p � ˛.v/C .pmin� .S/ � p˛.S//m
v.S/ > p � ˛.v/:

In both cases we have p � ˛0

.v/ > p � ˛.v/, which proves that sel.v/ ¤
Web.v/.

(v) In view of (i), it is sufficient to show that under the given condition, any
marginal vector x�;v

�

is also a marginal vector of v; i.e., x�;v
� D x�;v for

some appropriate � . From (3.23), we see that if there is no S s.t. jSj > 1 and
mv.S/ < 0, then it suffices to take � D � . Therefore, assume on the contrary
that such an S exists, and DC.v/ \ D�.v/ D fi0g. W.l.o.g, fix � to be the
identity permutation. Recall that x�;v�.i/ D P

T�f�.1/;:::;�.i/g;T3�.i/ mv.T/.
Step 1. Suppose only one such S exists, and denote by if ; il the first and last

element of S according to � . By (3.23), observe that the term mv.S/ can be
present in x�;v

�

i only if i D if , while for x�;v this can happen only for i D il. It

follows that x�;v
�

i D x�;vi for all i ¤ if ; il. Suppose i0 D if . Then

x�;v
�

if
D

X

T�f1;:::;if g;T3if

mv.T/C mv.S/

x�;v
�

il
D 0:

If i0 D il, we find

x�;v
�

if
D mv.S/

x�;v
�

il
D

X

T�f1;:::;ilg;T3il

mv.T/:

Lastly, if i0 ¤ if ; il, we find x�;v
�

if
D mv.S/ and x�;v

�

il
D 0. Consider the

permutation � that exchanges il and if in � . Then it can be checked that
x�;v

� D x�;v in any case.
Step 2. Suppose several such S exists, say S1; S2 (proceed similarly if more

than two subsets), and denote the “endpoints” of these sets by i1f ; i
1
l ; i

2
f ; i

2
l . As

in Step 1, the term mv.S1/ appears only for i D i1f , similarly for mv.S2/, and
the position of i0 on one of the endpoints determine where is the term of the
form

P
T�f1;:::;jg;T3j mv.T/. Therefore, the adequate permutation � consists in

taking the reverse order on S1 [ S2, and being equal to � otherwise (e.g., with
n D 7, if S1 D f2; 5g and S2 D f4; 5; 6g, the order induced by � would be
1,6,3,5,4,2,7).

ut
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Remark 3.63

(i) The selectope was first proposed by Hammer et al. in 1977 [189] and rediscov-
ered several times, most notably by Chateauneuf and Jaffray [49], and studied
in depth by Derks et al. [85]. All results from this section are from the latter
reference, while (ii) and (iii) in Theorem 3.62 were already proved in [49, 189],
using flow methods. Sharing values were also rediscovered by Billot and Thisse
[28], under the name Möbius values, while sharing values corresponding to
selectors appear in Dubois and Prade [104].

Although never explicitly defined, sharing values and the selectope underlie
many works in the theory of belief functions/measures (Chap. 7).

(ii) The necessary and sufficient condition (iv) in Theorem 3.62 is quite technical
and difficult to use in practice, but condition (v) is much more handy. It is easy
to see that games with nonnegative (or nonpositive) Möbius transform on non-
singletons coalitions satisfy this condition.



Chapter 4
Integrals

It is well known that in the case of classical (additive) measures, the Lebesgue
integral is the usual definition of an integral with respect to a measure, and it
allows the computation of the expected value of random variables. The question
which is addressed in this chapter is: How to define the integral of a function
with respect to a nonadditive measure, i.e., a capacity or a game? As we will
see, the answer is not unique, and there exist many definitions in the literature.
Nevertheless, two concepts of integrals emerge: the one proposed by Choquet in
1953, and the one proposed by Sugeno in 1974. Both are based on the decumulative
distribution function of the integrand w.r.t. the capacity, the Choquet integral being
the area below the decumulative function, and the Sugeno integral being the
value at the intersection with the diagonal. Most of the other concepts of integral
are also based on the decumulative function, like the Shilkret integral, but other
approaches are possible. For example, the concave integral proposed by Lehrer is
defined as the lower envelope of a class of concave and positively homogeneous
functionals.

Integrals being naturally defined for functions on an arbitrary (infinite) universe,
we suppose in this chapter that X is an arbitrary nonempty set, in contradiction with
the general philosophy of the book, which is to work on finite sets. As far as heavy
topological and measure-theoretic notions are not needed, we give definitions and
establish results in the general (infinite) case, before specializing to the discrete case.
More detailed expositions in a fully measure-theoretic framework can be found in
Denneberg [80], Marinacci and Montrucchio [235], Wang and Klir [343], see also
Murofushi and Sugeno [250, 252, 255].

The chapter mainly studies in parallel the Choquet integral and the Sugeno
integral. Their definition are first given for nonnegative functions (Sect. 4.2) and
then extended to real-valued functions (Sect. 4.3), which lead to two kinds of
integrals, the symmetric and the asymmetric one. In Sect. 4.4, the case of sim-
ple functions is studied, which leads naturally to the discrete case (Sect. 4.5).
The properties of both integrals are studied in depth in Sect. 4.6, followed by

© Springer International Publishing Switzerland 2016
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results on characterization (Sect. 4.8). Other minor topics are studied (expression
w.r.t. various transforms, particular cases, integrands defined on the real line,
etc.) before introducing other integrals (Sect. 4.11): the Shilkret integral, the
concave integral, the decomposition integral and various pseudo-integrals. The
chapter ends with an extension of the Choquet integral to nonmeasurable functions
(Sect. 4.12).

Throughout the chapter, all capacities and games are finite; i.e., 	.X/ < 1.

4.1 Simple Functions

Let X be arbitrary. A function f W X ! R is simple if its range ran f is a finite
set. We give several ways of decomposing a simple nonnegative function f using
characteristic functions. We assume ran f D fa1; : : : ; ang, supposing 0 6 a1 <
a2 < � � � < an. One can easily check that

f D
nX

iD1
ai1fx2X W f .x/Daig

D
nX

iD1
.ai � ai�1/1fx2X W f .x/>aig (4.1)

letting a0 D 0. These decompositions are respectively called the vertical and the
horizontal decompositions. These names should be clear from Fig. 4.1 illustrating
them.

X

f

a1

a3

a5

a4

a2

X

a1

a3

a5

a4

a2

X

a1

a3

a5

a4

a2

Fig. 4.1 Decompositions of a simple function f on X (function on left): vertical (middle), and
horizontal decomposition (right)
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4.2 The Choquet and Sugeno Integrals for Nonnegative
Functions

We consider an arbitray set X, together with an algebra F (Definition 2.102). A
function f W X ! R is F -measurable if the sets fx W f .x/ > tg and fx W f .x/ > tg
belong to F for all t 2 R.

We denote by B.F/ the set of bounded F -measurable functions, and by BC.F/
the set of bounded F -measurable nonnegative functions.

Lemma 4.1 The set B.F/ endowed with the usual order on functions is a lattice;
i.e., f ; g 2 B.F/ imply that f _ g and f ^ g belong to B.F/.

(The proof is left to the readers.) Evidently, the same holds for BC.F/.
For any function f 2 B.F/ and a capacity 	, we introduce the decumulative

distribution function or survival function G	; f W R ! R, which is defined by

G	; f .t/ D 	.fx 2 X W f .x/ > tg/ .t 2 R/: (4.2)

We notice that G	; f is well-defined because f is F -measurable. Some authors
replace “>” by “>,” but as we will see by Lemma 4.5, this is unimportant.

For convenience, we often use the shorthands 	. f > t/ and 	. f > t/ for 	.fx 2
X W f .x/ > tg/ and 	.fx 2 X W f .x/ > tg/.

We establish basic properties of the decumulative distribution function. Before
that, we introduce the notions of essential supremum and infimum.

Definition 4.2 For any f 2 B.F/ and any capacity 	 on .X;F/, the essential
supremum and essential infimum of f w.r.t. 	 are defined by

ess sup	 f D infft W fx 2 X W f .x/ > tg is null w.r.t. 	g
ess inf	 f D supft W fx 2 X W f .x/ < tg is null w.r.t. 	g

respectively (see Definition 2.107 for the definition of a null set).

Lemma 4.3 Let f 2 BC.F/ and 	 be a capacity on .X;F/. Then G	; f W R ! R

(i) is a nonnegative nonincreasing function, with G	; f .0/ D 	.X/;
(ii) G	; f .t/ D 	.X/ on the interval Œ0; ess inf	 f �;

(iii) has a compact support, namely Œ0; ess sup	 f �.

Proof (i) Obvious by monotonicity of 	 and the fact that t > t0 implies fx W f .x/ >
tg � fx W f .x/ > t0g.

(ii) By definition, N D f f < ess inf	 f g is a null set, hence G	; f .ess inf	 f / D
	.X n N/ D 	.X/ by Theorem 2.108(vi).

(iii) Since f is bounded, so is its essential supremum. Now, by definition fx W
f .x/ > ess sup	 f g is a null set, therefore G	; f .t/ D 0 if t > ess sup	 f . ut
Figure 4.2 illustrates these definitions and properties.
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X

f(x)

ess supμf

sup f

ess infμf
inf f t

Gμ,f (t)

ess infμf ess supμf

μ(X)

Fig. 4.2 A bounded nonnegative measurable function (left) and its decumulative distribution
(right), supposing that singletons are null sets

Definition 4.4 Let f 2 BC.F/ and	 be a capacity on .X;F/. The Choquet integral
of f w.r.t. 	 is defined by

Z

f d	 D
Z 1

0

G	; f .t/ dt; (4.3)

where the right hand-side integral is the Riemann integral.

Let us check if the Choquet integral is well-defined. As shown in Lemma 4.3,
the decumulative function is a decreasing function bounded by 	.X/ < 1, with
compact support. Hence it is Riemann-integrable, so the Choquet integral is well-
defined.

We prove now that it is equivalent to put a strict inequality in the definition of the
decumulative function.

Lemma 4.5 Let f 2 BC.F/ and 	 be a capacity. Then

Z 1

0

	. f > t/ dt D
Z 1

0

	. f > t/ dt:

Proof (We follow Marinacci and Montrucchio [235].) Set for simplicity G0
	; f .t/ D

	.fx W f .x/ > tg/ for each t 2 R. We have for each t 2 R and each n 2 N

n
x W f .x/ > t C 1

n

o
� fx W f .x/ > tg � fx W f .x/ > tg

which yields

G	; f

�
t C 1

n

�
6 G0

	; f .t/ 6 G	; f .t/:

If G	; f is continuous at t, we have

G	; f .t/ D lim
n!1 G	; f

�
t C 1

n

�
6 G0

	; f .t/ 6 G	; f .t/
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hence equality holds throughout. Otherwise, as G	; f is a nonincreasing function, it
is discontinuous on an at most countable set T � R. Hence both functions are equal
for all t 62 T, which in turn implies that

R1
0

G0
	; f .t/ dt D R1

0
G	; f .t/ dt by standard

results on Riemann integration. ut
We turn now to the Sugeno integral.

Definition 4.6 Let f 2 BC.F/ be a function and 	 be a capacity on .X;F/. The
Sugeno integral of f w.r.t. 	 is defined by

�
Z

f d	 D
_

t>0
.G	; f .t/ ^ t/ D

^

t>0
.G	; f .t/ _ t/: (4.4)

In words, the Sugeno integral is the abscissa of the intersection point between the
diagonal and the decumulative function, while the Choquet integral is the area below
the decumulative function (Fig. 4.3).

One can easily check that the second equality holds in (4.4).

Remark 4.7 As for the Choquet integral, G	; f .t/ can be replaced by G0
	; f .t/ D

	fx W f .x/ > tg without change. Indeed, we have proved that G	; f and G0
	; f only

differ at discontinuity points, and for those points, it can be checked that the two
definitions lead to the same result. }

We immediately give a useful alternative formula for the Sugeno integral.

Lemma 4.8 Let f 2 BC.F/ be a function and 	 be a capacity on .X;F/. The
Sugeno integral can be written as follows:

�
Z

f d	 D
_

A2F

�^

x2A

f .x/ ^ 	.A/
�
: (4.5)

t

Gμ,f (t)

ess supμf

μ(X)

−f dμ

−f dμ f dμ

Fig. 4.3 The Choquet and Sugeno integrals
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Proof For any t > 0, because
V

x W f .x/>t f .x/ > t and f f > tg 2 F we have

t ^ 	. f > t/ 6
_

A2F

�^

x2A

f .x/ ^ 	.A/
�
;

which yields

�
Z

f d	 D
_

t>0

�
t ^ 	. f > t/

�
6
_

A2F

�^

x2A

f .x/ ^ 	.A/
�
: (4.6)

Now, for any given A 2 F , taking t0 D V
x2A f .x/, we get A � f f > t0g. Applying

monotonicity of 	, we obtain

^

x2A

f .x/ ^ 	.A/ 6 t0 ^ 	. f > t0/ 6
_

t>0

�
t ^ 	. f > t/

�
D �
Z

f d	

for any A 2 F . Consequently,

_

A2F

�^

x2A

f .x/ ^ 	.A/
�

6 �
Z

f d	;

which, with (4.6), permits to conclude. ut
This result is already in the original work of Sugeno [319] (see also Wang and Klir
[343, Theorem 9.1]).

A fundamental fact is the following.

Lemma 4.9 Let A 2 F (i.e., 1A is measurable). Then for every capacity 	

Z

1A d	 D 	.A/: (4.7)

(Proof is obvious and omitted.) The consequence is that the Choquet integral can be
viewed as an extension of capacities from F to BC.F/. The same statement holds
for the Sugeno integral for normalized capacities only (see Theorem 4.43(iii) for a
more general statement).

Remark 4.10

(i) The Choquet integral generalizes the Lebesgue integral, and the latter is
recovered when 	 is a measure in the classical sense.
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(ii) As the name indicates, the Choquet integral was introduced by Gustave
Choquet1 [53], although this reference does not mention explicitly any notion
of integral. As many great ideas, the Choquet integral was rediscovered many
times. The first appearance seems to be due to Vitali2 [332], whose integral for
inner and outer Lebesgue measures is exactly the Choquet integral for these
measures. We mention also Šipoš [334], who introduced the symmetric version
of the Choquet integral (Sect. 4.3.1) as the limit of finite sums computed over
finite subsets of R containing 0. Also, the expression of the Choquet integral
in the discrete case can be found in the 1967 paper of Dempster on upper
and lower probabilities [77, Eq. (2.10)], as well as in the works of Lovász
[226] (known under the name of Lovász extension; see Sect. 2.16.4). Up to the
knowledge of the author, the first appearance of the name “Choquet integral”
is due to Schmeidler [286] in 1986, followed independently by Murofushi and
Sugeno in 1989 [250]. As mentioned by Chateauneuf and Cohen [48, Footnote
10], Schmeidler in fact rediscovered the Choquet integral, and became aware
that is was previously introduced by Choquet through private discussions with
Jean-François Mertens, who drew his attention to the 1971 paper by Del-
lacherie [76], showing that the Choquet integral is comonotonically additive
and monotone (a fact, by the way, duly acknowledged by Schmeidler himself
in [286]).

(iii) The Sugeno integral was introduced by Michio Sugeno3 in 1972 [318–320]
under the name of fuzzy integral.4 As for the Choquet integral, this functional
was in fact known as early as 1944, under the name of Ky Fan5 distance [137].
This distance is defined as

k f � gk0 D
_

fx W x > 0;G�;j f �gj.x/=x < 1g

with � a �-additive probability. Hence, the Sugeno integral of f corresponds to
the Ky Fan distance of f to the null function; i.e., k f � 0k0.

1Gustave Choquet (Solesmes, 1915 – Lyon, 2006) is a French mathematician. He was professor at
Université Pierre et Marie Curie in Paris and at École Polytechnique, and his main contributions
include functional analysis, potential and capacity theory, topology and measure theory.
2Giuseppe Vitali (Ravenna, 1875 – Bologna, 1932), Italian mathematician. His contributions
concern measure theory.
3Michio Sugeno (Yokohama, 1940–), Japanese computer scientist and mathematician. He has been
professor at Tokyo Institute of Technology. Apart his contribution to measure theory, he mainly
works in the field of artificial intelligence.
4As mentioned on p.28, Sugeno used instead of “capacity” the term “fuzzy measure,” which he
introduced, in the idea of representing human subjectivity.
5Ky Fan (Hangzhou, 1914 – Santa Barbara CA, 2010) Chinese mathematician. He received his
D.Sc. degree in Paris under the supervision of M. Fréchet, and then did all his career in the United
States, mainly at UCSB. He worked in convex analysis and topology. The “Fan inequality” is
famous and generalizes Cauchy-Schwarz inequality.
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(iv) An important observation is that the Sugeno integral can live on very poor
structures for the range of the integrands and capacities: the richness of the real
line is not needed, contrarily to the Choquet integral, and the definition of the
Sugeno integral works on any totally ordered set L, like N or any finite subset
of it, provided L is considered to be a set of “positive” values (see Sect. 4.3.2
for the general case where negative values are allowed). In particular, L can
be taken as a qualitative scale; i.e., a finite totally ordered set of qualitative
degrees of evaluation, like {very bad, bad, medium, good, very good}. The
only requirement is that the range of 	 and f should be included in L.

(v) The Choquet and Sugeno integrals are defined for (finite) capacities, but their
definitions still work for games, provided they are of bounded variation norm
(Sect. 2.19.1) in the case of the Choquet integral. However, note that in this
case, the decumulative function is no longer nonincreasing in general, which
causes the second equality in (4.4) not to hold any more! Therefore, it is
better to consider that the Sugeno integral is not well defined in the case
of nonmonotonic games. Alternatively, one may decide to define the Sugeno
integral by, e.g., the expression with the supremum.

Lastly, note that the Choquet integral is not defined for set functions 
 such
that 
.¿/ ¤ 0. Indeed, the area under the decumulative function may become
infinite in this case.

(vi) We may define these integrals on a restricted domain A � X: in this case, we
write
Z

A
f d	 D

Z 1

0

	.f f > tg \ A/ dt; �
Z

A
f d	 D

_

t>0
.	.f f > tg \ A/ ^ t/:

(4.8)

}

4.3 The Case of Real-Valued Functions

We suppose now that f is a bounded measurable real-valued function. We decom-
pose f into its positive and negative parts f C, f �:

f D f C � f �; with f C D 0 _ f ; f � D .�f /C: (4.9)

Note that both f C; f � are nonnegative functions in BC.F/ (bounded and measur-
able).
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4.3.1 The Choquet Integral

There are basically two ways for extending the Choquet integral to functions in
B.F/. The simplest one is to consider that the integral is additive with respect to the
above decomposition:

LZ
f d	 D

Z

f C d	�
Z

f � d	: (4.10)

Observe that since f C; f � 2 BC.F/, the integral is well-defined, and that it satisfies

LZ
.�f / d	 D � LZ

f d	; (4.11)

because .�f /C D f � and .�f /� D f C. For this reason, this integral is called the
symmetric Choquet integral.

Example 4.11 Consider X D R and the function f defined by f .x/ D sign .x/. Then
its symmetric integral is

LZ
sign d	 D

Z

1RC
d	 �

Z

1R�
d	 D 	.RC/� 	.R�/;

using Lemma 4.9. Now, consider the nonnegative function 1R C sign ; i.e., the
function defined by f .x/ D 1C sign .x/, x 2 R. We can easily check that

LZ
.1R C sign / d	 D

Z

.1R C sign / d	 D 2	.RC/:

Þ

The use of real-valued functions permits to consider translations of functions; i.e.,
to consider f C ˛1X with ˛ 2 R. We say that a functional I on B.F/ is translation
invariant if for every f 2 B.F/ and ˛ 2 R,

I. f C ˛1X/ D I. f /C ˛I.1X/:

By Lemma 4.9, for any extension QR of the Choquet integral, this definition reduces
to

QZ
. f C ˛1X/ d	 D QZ

f d	C ˛	.X/:
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Example 4.11 shows that the symmetric integral is not invariant to translation,

because LR . f C 1X/ d	 ¤ LR f d	 C 	.X/. There exists an extension of the Choquet
integral that is translation invariant, given by

Z

f d	 D
Z

f C d	�
Z

f � d	 (4.12)

where 	 is the conjugate capacity. Observe that this integral is well defined
for any F -measurable function [see (4.13)], and is clearly an extension of the
Choquet integral. We use the same symbol for the Choquet integral of nonnegative
functions and its extension. This is because this extension is the usual one, some-
times called asymmetric Choquet integral (Denneberg [80]), because in generalR
.�f / d	 ¤ � R f d	. Without further indication, by “Choquet integral” we

always mean its asymmetric extension. An equivalent and more explicit expres-
sion is

Z

f d	 D
Z 1

0

	. f > t/ dt C
Z 0

�1
�
	. f > t/ � 	.X/� dt: (4.13)

Indeed,

�
Z

f � d	 D �
Z 1

0

	.�f > t/ dt D �
Z 1

0

�
	.X/� 	.f�f > tgc/

�
dt

D
Z 0

�1
�
	. f > t/ � 	.X/� dt:

This formula has an easy graphical interpretation (Fig. 4.4). Note that
G	; f .ess inf	 f /D	.X/, similarly to the case of nonnegative functions (Lemma 4.3).
Let us check translation invariance using (4.13). For any ˛ 2 R,

+

−

t

Gμ,f (t)

Gμ,f (t) − μ(X)
ess supμf

ess infμf

μ(X)

Fig. 4.4 Computation of the asymmetric integral. The two hatched areas are equal, and the value
of the integral is the difference of the nonhatched area and one hatched area
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Z

. f C ˛1X/ d	 D
Z 1

0

	. f C ˛1X > t/ dt C
Z 0

�1
�
	. f C ˛1X > t/ � 	.X/� dt

D
Z 1

0

	. f > t � ˛/ dt C
Z 0

�1
�
	. f > t � ˛/ � 	.X/

�
dt

D
Z 1

�˛
	. f > t0/ dt0 C

Z �˛

�1
�
	. f > t0/� 	.X/

�
dt0

D
Z

f d	C ˛	.X/;

letting t0 D t � ˛. We now prove that this extension is the only one satisfying
translation invariance.

Theorem 4.12 The unique extension of the Choquet integral on BC.F/ to B.F/
that is translation invariant is the asymmetric integral given by (4.13).

Proof (We follow Marinacci and Montrucchio [235].) Suppose that I is a
functional on B.F/ that is translation invariant and coincides with the Choquet
integral on BC.F/. It suffices to show that I has the form given by (4.13).
Take f 2 B.F/ and suppose that inf f D � < 0. By translation invariance,
I. f � �1X/ D I. f / � � I.1X/. As f � �1X belongs to BC.F/, we can
write:

I. f / D I. f � �1X/C � I.1X/

D
Z

. f � �1X/ d	C �	.X/

D
Z 1

0

	. f � �1X > t/ dt C �	.X/

D
Z 1

�

	. f > t0/ dt0 C �	.X/

D
Z 0

�

	. f > t0/ dt0 C
Z 1

0

	. f > t0/ dt0 �
Z 0

�

	.X/ dt0

with t0 D t C � . As 	. f > t0/ � 	.X/ D 0 for all t0 6 � , it follows
that

I. f / D
Z 1

0

	. f > t/ dt C
Z 0

�1
�
	. f > t/ � 	.X/� dt;

the desired result.
ut
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Remark 4.13 The integral introduced by Šipoš in 1979 [334] coincides with the
symmetric Choquet integral. For this reason, the latter is sometimes called the Šipoš
integral. Note also that Tversky and Kahneman [329] proposed with prospect theory
a generalization of the symmetric Choquet integral (Sect. 5.2.7). }

4.3.2 The Sugeno Integral

The case of the extension of the Sugeno integral on functions taking negative values
cause unexpected problems, because of the ordinal nature of this integral, defined
solely with minimum and maximum. We begin by explaining the origin of the
problem.

Suppose we want to define a symmetric Sugeno integral, in the spirit of (4.10).
Simply replacing

R
by �R is tempting, however, one should be aware that doing

so, two different algebraic systems are mixed: the algebra based on minimum and
maximum, on which the Sugeno integral is built, and the usual algebra based on
arithmetic operations C;�;�, on which is based the Choquet integral. Mixing the
two would forbid the Sugeno integral to work on finite chains, i.e., totally ordered
sets [see Remark 4.10(iv)], which is one of the main interest of this integral. Hence,
one has to find a substitute for the “�” operation.

Taking an algebraic point of view, we may see the quantity a � b as a C .�b/,
hence, considering that _;^ should play the rôle of “C” and “�”, our task amounts to
extending the minimum and maximum on negative numbers, while keeping as much
as possible properties of the ring of real numbers. To this purpose, let us consider
that integrands f and capacities 	 take values in L, which is a set endowed with a
total order >, and symmetric in the sense that for any a 2 L, there exists an element
�a 2 L, and there is a unique element called “zero,” denoted by 0, such that �0 D 0.
Elements a such that a > 0 are called “positive,” while those satisfying a < 0 are
“negative.” It is assumed that 	 takes nonnegative values, and that 	.¿/ D 0. Also,
denote by LC;L� the set of positive and negative elements of L, respectively.

Considering that the maximum operator is defined on LC, we seek an extension
of it on L, denoted by �, so that the symmetric integral, defined by

L�
Z

f d	 D �
Z

f C d	�

 

� �
Z

f � d	

!

(4.14)

has suitable properties. Hence, our first requirement is:

R1. � coincides with _ on .LC/2.
Next, we require that a and �a are symmetric w.r.t. �:

R2. For every a 2 L, a �.�a/ D 0.

This property would yield an integral of value 0 for a function f that has equal
integrals of f C and f �. Observe that surprisingly, these two simple requirements
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yield an operator that is not associative. Indeed, letting L D Z, consider the
aggregation of the values �3; 3; 2. We have

..�3/� 3/� 2/ D 0�2 D 0 _ 2 D 2

.�3/�.3� 2/ D .�3/�.3 _ 2/ D .�3/� 3 D 0:

Hence, any extension of the maximum satisfying R2 is by essence nonassociative
(note however that associativity holds on LC, and that (4.14) does not require
associativity).

The lack of associativity forbids to infer the rule of sign, hence we are forced to
put it as an axiom:

R3. For every a; b 2 L, .�a/�.�b/ D �.a � b/.

This rule is necessary for the symmetry property of the integral to hold:

L�
Z

.�f / d	 D �
Z

f � d	�

 

� �
Z

f C d	

!

D �
  

� �
Z

f � d	

!

� �
Z

f C d	

!

D � L�
Z

f d	; (4.15)

and is therefore mandatory.
It can be shown that under the three requirements R1, R2 and R3, the “best”

definition for the symmetric maximum is given below, in the sense that no operator
satisfying the three requirements is associative on a larger domain (for a detailed
discussion including a proof of this result, see Grabisch et al. [177, Sect. 9.3] and
the original paper [166]).

Definition 4.14 Let L be a symmetric totally ordered set. The symmetric maximum
� W L2 ! L is defined by:

a � b D

8
ˆ̂
<

ˆ̂
:

�.jaj _ jbj/; if b ¤ �a and either jaj _ jbj D �a or D �b

0; if b D �a

jaj _ jbj; otherwise.
(4.16)

Observe that, except for the case b D �a, a � b equals the absolutely larger one of
the two values a and b.6

6A simple image to understand the result of a � b when a and b have different sign is the image of
a pair of scales. On one pan one puts the negative number, say a, and on the other pan one puts the
positive number b, and the weight of a number is its absolute value. Then, if a D �b, the two pans
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In summary, the symmetric Sugeno integral is defined by (4.14), with � given in
Definition 4.14.

Remark 4.15

(i) The symmetric maximum on a symmetric real interval Œ�˛; ˛� can be obtained
as the limit for n ! 1 of a family of binary operators ˚n defined on Œ�˛; ˛�
by

a ˚n b D �
a2n�1 C b2n�1� 1

2n�1

as it can be checked (Mesiar and Komornikova [241]). Note that ˚n is
associative for all n 2 N.

(ii) What about the asymmetric Sugeno integral? It seems that yet no adequate
definition exists. Mimicking (4.12) is meaningless because this definition is
taylored to get a translation-invariant integral, and anyway this would lead to an
integral with bad properties (see a discussion in Grabisch [164] and also [177,
p. 215]). Since the Sugeno integral for nonnegative functions is not translation
invariant, the methodology used for the Choquet integral cannot be applied.
As a consequence, unless symmetry of the integral is desired, as expressed by
(4.15), the most reasonable seems to restrict the usage of the Sugeno integral to
nonnegative functions. }

4.4 The Choquet and Sugeno Integrals for Simple Functions

We deal here with simple and measurable functions (see Sect. 4.1). Our aim is to
derive explicit formulas for the Choquet and Sugeno integrals.

4.4.1 The Choquet Integral of Nonnegative Functions

Let f be a simple, measurable and nonnegative function, with ran f D fa1; : : : ; ang,
supposing as before 0 6 a1 < a2 < � � � < an, and let us introduce the sets Ai D
fx 2 X W f .x/ > aig, for i D 1; : : : ; n. Note that A1 D X. The decumulative
distribution function w.r.t. a capacity 	 is now a staircase function (Fig. 4.5). The
Choquet integral is the area below the decumulative function (in blue on Fig. 4.5).
Dividing this area in vertical rectangles (delimited by solid lines in Fig. 4.5), we find

are balanced, otherwise, the pan with the “heavier” number goes down, and the result of a � b is
the number contained in the latter pan.
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t

Gμ,f (t)

μ(X)

a1 a2 a3 a4

μ(A2)

μ(A3)

μ(A4)

Fig. 4.5 A decumulative distribution function of a simple function taking values a1 < a2 < a3 <
a4

the following formula:

Z

f d	 D
nX

iD1
.ai � ai�1/	.Ai/; (4.17)

letting a0 D 0.

Remark 4.16 Observe that this formula comes immediately from the horizontal (!)
decomposition of a simple function [Eq. (4.1)]. Indeed, assuming that the integral is
additive for the step functions 1fx2X W f .x/>aig and positively homogeneous, we have7

Z

f d	 D
Z nX

iD1
.ai � ai�1/1fx2X W f .x/>aig d	 D

nX

iD1
.ai � ai�1/

Z

1fx2X W f .x/>aig d	;

which yields the above formula by using Lemma 4.9. }
It is equivalent to compute the area under the decumulative function by cutting the
surface into horizontal rectangles (delimited by the dashed lines on Fig. 4.5). Doing
so, we obtain the equivalent formula

Z

f d	 D
nX

iD1
ai
�
	.Ai/� 	.AiC1/

�
; (4.18)

with the convention AnC1 D ¿. Note also that this formula readily obtains from a
rearrangement of terms in (4.17).

7As it will be seen in Sect. 4.6.1, this is true because the step functions are pairwise comonotonic,
hence by Theorem 4.28, additivity holds. Also, the Choquet integral is always positively homoge-
neous [Theorem 4.24(i)].
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Extension to Games Are these formulas valid for games? It is easy to check that
the vertical division of the area of the decumulative function still works even if this
function is nondecreasing, hence (4.17) remains valid, and (4.18) as well, because
it is obtained from the former one by rearrangement.

4.4.2 The Sugeno Integral of Nonnegative Functions

The case of the Sugeno integral requires more care, because the 45ı line may
intersect the decumulative distribution function on a horizontal or a vertical segment
(Fig. 4.6). Let us compute

W
t>0.G	; f .t/ ^ t/ for any function f and any capacity 	,

t

Gμ,f (t)
μ(X)

a1 a2 a3 a4

μ(A2)

μ(A3)

μ(A4)

× ⊗
×

×

t

Gμ,f (t)
μ(X)

a1 a2 a3 a4

μ(A2)

μ(A3)

μ(A4)

× ×
×

⊗

Fig. 4.6 Computation of the Sugeno integral: two cases

decomposing it as follows:

_

t>0
.G	; f .t/ ^ t/ D

_

t2Œ0;a1�
.G	; f .t/ ^ t/ _

_

t2�a1;a2�
.G	; f .t/ ^ t/ _ � � �

� � � _
_

t2�an�1;an �

.G	; f .t/ ^ t/ _
_

t>an

.G	; f .t/
„ ƒ‚ …

0

^t/;

where the last term could be ignored. Observe from Fig. 4.6 that for i D 1; : : : ; n

_

t2�ai�1;ai�

.G	; f .t/ ^ t/ D 	.Ai/ ^ ai;

with a0 D 0 and Ai D fx 2 X W f .x/ > aig, which yields the formula

�
Z

f d	 D
n_

iD1

�
ai ^ 	.Ai/

�
: (4.19)
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Let us apply the same procedure to decompose
V

t>0.G	; f .t/ _ t/:

^

t>0
.G	; f .t/ _ t/ D

^

t2Œ0;a1�
.G	; f .t/ _ t/ ^

^

t2�a1;a2�
.G	; f .t/ _ t/ ^ � � �

� � � ^
^

t2�an�1;an�

.G	; f .t/ _ t/ ^
^

t>an

.G	; f .t/
„ ƒ‚ …

0

_t/

D 	.A1/ ^ .	.A2/ _ a1/ ^ � � � ^ .	.An/ _ an�1/ ^ an;

which can be summarized as

�
Z

f d	 D
n̂

iD0

�
ai _ 	.AiC1/

�
(4.20)

with the convention AnC1 D ¿ and a0 D 0.
It is important to note that the result of the integral is either a value ak of the

integrand or the value of the capacity for a set Ak. Specifically (see Fig. 4.6), for
all a1; : : : ; ai prior the intersection of G	; f with the diagonal (circles above the
diagonal), we have

_

t2�ak�1;ak �

.G	; f .t/ ^ t/ D ak .k D 1; : : : ; i/:

This is indicated by crosses on the abscissa axis (�). Similarly, for all points
aiC1; : : : ; an after the intersection with the diagonal (circles below the diagonal),
we have

_

t2�ak�1;ak�

.G	; f .t/ ^ t/ D 	.Ak/ .k D i C 1; : : : ; n/:

Again this is indicated by crosses on the Y-axis. If the diagonal intersects a
vertical segment, then the maximum over all crosses is situated on the abscissa
axis (indicated by ˝ on the figure); i.e., the value of the Sugeno integral is one
of the values taken by the integrand f . If on the contrary, the diagonal intersects a
horizontal segment, the maximum is situated on the Y-axis. In this case, the value of
the Sugeno integral is one of the values taken by the capacity 	. These observations
yield a third formulation, due to Kandell and Byatt [204].

Lemma 4.17 For any simple measurable nonnegative function f on X and any
capacity 	, we have

�
Z

f d	 D med.a1; : : : ; an; 	.A2/; : : : ; 	.An//; (4.21)
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using the above notation, and where med is the median of a set of an odd number of
real numbers.

Proof As remarked above, the Sugeno integral is either equal to ak or to 	.Ak/ for
some k 2 f1; : : : ; ng. Let us suppose that �R f d	 D ak. Then ak 6 	.Ak/, and
a1; : : : ; ak�1; 	.AkC1/; : : : ; 	.An/ are smaller or equal to ak (hence n � 1 values).
Similarly, akC1; : : : ; an; 	.A2/; : : : ; 	.Ak/ are greater or equal to ak (again n � 1

values). Consequently, ak is the median of the values a1; : : : ; an; 	.A2/; : : : ; 	.An/.
When �R f d	 D 	.Ak/, the proof is much the same. ut
Extension to Games As explained in Remark 4.10(v), it is better not to consider
the Sugeno integral w.r.t. games. Formula (4.19) with the supremum is not affected
if Gv;f is not monotone, however it is no longer equivalent with formula (4.20) with
the infimum, nor with the expression with the median. To illustrate this, consider a
simple function f with range f 1

4
; 1
2
; 3
4
g, and v.A1/ D 1; v.A2/ D 0, v.A3/ D 1. Then

�
Z

f dv D 1

4
_ 0 _ 3

4
D 3

4
¤ med

�1

4
;
1

2
;
3

4
; 0; 1

�
D 1

2
:

4.4.3 The Case of Real-Valued Functions

We begin with the Choquet integral. Consider a simple measurable function f W X !
R, with ran f D fa1; : : : ; ang, supposing a1 < � � � < ap < 0 6 apC1 < � � � < an, and
a capacity 	. A direct application of (4.10) and (4.17) leads to

LZ
f d	 D

p�1X

iD1
.ai � aiC1/	.1fx2X W f .x/6aig/C ap	.1fx2X W f .x/6apg/

C apC1	.1fx2X W f .x/>apC1g/C
nX

iDpC2
.ai � ai�1/	.1fx2X W f .x/>aig/: (4.22)

For the (asymmetric) Choquet integral, simply observe that this integral is invariant
by translation, and because f is bounded, f 0 D f C .�a1/1X is nonnegative. By
translation invariance, this yields

R
f 0 d	 D R

f d	 � a1	.X/, with ran f 0 D
fa0
1; a

0
2; : : : ; a

0
ng and a0

i D ai � a1, i D 1; : : : ; n. Using (4.17) for f 0, we get, letting
a0 D 0,

Z

f d	 D
Z

f 0 d	C a1	.X/ D
nX

iD1

.a0

i � a0

i�1/	.Ai/C a1	.X/ D
nX

iD1

.ai � ai�1/	.Ai/

(4.23)

because a0
1 D 0. We recognize the formula (4.17) for nonnegative functions, hence

(4.17) is valid for any real-valued function.
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The formula for the symmetric Sugeno integral can be simply obtained in the
same way, from (4.14) and (4.19). Defining the symmetric minimum as the binary
operator � W L2 ! L given by

a � b D
(

�.jaj ^ jbj/; if sign .a/ ¤ sign .b/

jaj ^ jbj; otherwise;
(4.24)

one obtains:

L
�
Z

f d	 D
� p

�
iD1
�
ai �	.1fx2X W f .x/6aig/

��

�

� n
�

iDpC1
�
ai �	.1fx2X W f .x/>aig/

��
; (4.25)

with the same notation as above.

Remark 4.18 Since we have only used formulas valid for games, the formulas given
here are also valid for games. }

4.5 The Choquet and Sugeno Integrals on Finite Sets

We suppose in this section that X D fx1; : : : ; xng is a finite set of n elements and
that F D 2X , hence all functions are measurable and simple. Thus, the expressions
of the Choquet and Sugeno integrals directly obtain from the formulas for simple
functions.

4.5.1 The Case of Nonnegative Functions

Take a nonnegative function f , and identify it with the vector . f1; : : : ; fn/, letting
fi D f .xi/. Choose � a permutation on X such that f�.1/ 6 f�.2/ 6 � � � 6 f�.n/.
Observe that the whole set of nonnegative functions on X can be partitioned into nŠ
subsets, depending on which permutation orders the values of f . We set

.RXC/� D f f W X ! RC W f�.1/ 6 � � � 6 f�.n/g;

and similarly we define R
X
� , IX

� where I is an interval in R, in particular Œ0; 1�X� , the
canonical simplices of the unit hypercube (Remark 2.89).

Setting

A"
� .i/ D fx�.i/; x�.iC1/; : : : ; x�.n/g .i D 1; : : : ; n/;
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we obtain directly from (4.17) and (4.18) the following expressions, for any capacity
	:

Z

f d	 D
nX

iD1
. f�.i/ � f�.i�1//	.A"

� .i//: (4.26)

Z

f d	 D
nX

iD1
f�.i/

�
	.A"

� .i//� 	.A"
� .i C 1//

�
; (4.27)

with the conventions f�.0/ D 0 and A"
� .n C 1/ D ¿.

For the Sugeno integral, we obtain from (4.19) and (4.20):

�
Z

f d	 D
n_

iD1

�
f�.i/ ^ 	.A"

� .i//
�
: (4.28)

�
Z

f d	 D
n̂

iD0

�
f�.i/ _ 	.A"

� .i C 1//
�

(4.29)

with the same conventions.
As it is sometimes convenient, we give also the formulas where the permutation

orders the function in descending order. Given a function f , denote by � a
permutation such that f�.1/ > f�.2/ > � � � > f�.n/ and define the sets

A#
� .i/ D fx�.1/; : : : ; x�.i/g .i D 1; : : : ; n/:

Then formulas (4.26)–(4.29) become

Z

f d	 D
nX

iD1
. f�.i/ � f�.iC1//	.A#

� .i// (4.30)

Z

f d	 D
nX

iD1
f�.i/

�
	.A#

� .i//� 	.A#
� .i � 1//

�
(4.31)

�
Z

f d	 D
n_

iD1

�
f�.i/ ^ 	.A#

� .i//
�

(4.32)

�
Z

f d	 D
nC1̂

iD1

�
f�.i/ _ 	.A#

� .i � 1//� (4.33)

with the convention f�.nC1/ D 0 and A#
� .0/ D ¿.
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Remark 4.19 Based on considerations given in Sect. 4.4, all formulas remain valid
for games, except formulas (4.29), and (4.33). }
Example 4.20 We give a practical example of computation of Choquet and Sugeno
integrals. Take X D fx1; : : : ; x4g and the function f D .0:2; 0:1; 0:5; 0:3/. There
is a unique permutation � arranging f in increasing order: �.1/ D 2, �.2/ D 1,
�.3/ D 4 and �.4/ D 3. Indeed, f�.1/ < f�.2/ < f�.3/ < f�.4/. It follows that the sets

A"
� .i/ are

A"
� .1/ D X; A"

� .2/ D fx1; x3; x4g; A"
� .3/ D fx3; x4g; A"

� .4/ D fx3g:

Let us specify the values of the capacity 	 for these sets:

	.X/ D 1; 	.fx1; x3; x4g/ D 0:8; 	.fx3; x4g/ D 0:6; 	.fx3g/ D 0:2:

We obtain for the integrals

Z

f d	 D f2	.X/C . f1 � f2/	.fx1; x3; x4g/C . f4 � f1/	.fx3; x4g/C . f3 � f4/	.fx3g/

D 0:1C 0:08C 0:06C 0:04 D 0:28

�
Z

f d	 D . f2 ^ 	.X//_ . f1 ^ 	.fx1; x3; x4g// _ . f4 ^ 	.fx3; x4g// _ . f3 ^ 	.fx3g//

D 0:1 _ 0:2 _ 0:3 _ 0:2 D 0:3:

Þ

Example 4.21 (Example 2.8 continued) (Murofushi and Sugeno [250, 254]) Let
X D fx1; : : : ; xng be the set of workers. We suppose that each day they all start
working at 8:00, work continuously, but they leave at different times. Let us denote
by f .xi/ the number of worked hours for worker xi, and suppose that f .x1/ 6 f .x2/ 6
� � � 6 f .xn/; i.e., x1 leaves first and so on.

Consider that for any group of workers A � X, its productivity per hour is 	.A/,
and 	 W 2X ! RC is a capacity (or a game). Let us compute the total number of
goods produced per day by the set of all workers. By definition of f , we have

• The entire group X has worked f .x1/ hours;
• Then x1 leaves and the group X n fx1g D fx2; : : : ; xng works in addition f .x2/ �

f .x1/ hours;
• Then x2 leaves and the group Xnfx1; x2g D fx3; : : : ; xng works in addition f .x3/�

f .x2/, etc.,
• Finally only xn remains and he works still f .xn/ � f .xn�1/ hours alone.
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Supposing linearity in production, the total production is:

f .x1/	.X/C . f .x2/� f .x1//	.fx2; : : : ; xng/C . f .x3/ � f .x2//	.fx3; : : : ; xng/
C � � � C . f .xn/� f .xn�1//	.fxng/:

We recognize here the Choquet integral
R

f d	. Þ

Example 4.22 (The Hirsch index) The well-known h-index introduced by Hirsch
[195] to quantify the research output of a researcher (how is this conceivable?!), is
defined as follows: your h-index is ˛ if you published ˛ papers which are cited at
least ˛ times, and any other of your published papers has no more than ˛ citations.
This can be expressed formally through the function f defined on X D fx1; : : : ; xng,
the set of papers of a given researcher r, by

paper xi 7! f .xi/ D number of citations of xi .i D 1; : : : ; n/:

Then, taking a permutation � on X such that f .x�.1// > � � � > f .x�.n//, the h-index
of r is given by

hr D
n_

iD1
. f .x�.i// ^ i/: (4.34)

As noticed by Torra and Narukawa [328], this has a Sugeno integral form, taking 	
to be the counting measure mc (Example 2.4). Indeed,

�
Z

f dmc D
n_

iD1
. f .x�.i// ^ mc.f�.1/; : : : ; �.i/g/ D

n_

iD1
. f .x�.i// ^ i/ D hr:

Þ

4.5.2 The Case of Real-Valued Integrands

First we deal with the Choquet integral. Suppose f W X ! R, with at least one value
fi being negative, and take � any permutation on X such that f�.1/ 6 � � � 6 f�.p/ <
0 6 f�.pC1/ 6 � � � 6 f�.n/. We obtain directly from (4.22)

LZ
f d	 D

p�1X

iD1
. f�.i/ � f�.iC1//	.fx�.1/; : : : ; x�.i/g/C f�.p/	.fx�.1/; : : : ; x�.p/g/

C f�.pC1/	.fx�.pC1/; : : : ; x�.n/g/

C
nX

iDpC2
. f�.i/ � f�.i�1//	.fx�.i/; : : : ; x�.n/g/: (4.35)
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For the (asymmetric) Choquet integral, referring to the case of simple functions, we
find that formulas (4.26) and (4.27) remain valid.

Lastly, the symmetric Sugeno integral obtains directly from (4.25):

L�
Z

f d	 D
� p

�
iD1
�

f�.i/ �	.fx�.1/; : : : ; x�.i/g/
��

�

� n
�

iDpC1
�

f�.i/ �	.fx�.i/; : : : ; x�.n/g/
��
: (4.36)

Note that both formulas are still valid for games.

4.5.3 The Case of Additive Capacities

If the capacity is additive, the formulas simplify for the Choquet integral. Indeed,
additivity of 	 yields 	.A"

� .i//� 	.A"
� .i C 1// D 	.f�.i/g/, hence we obtain from

(4.27):

Z

f d	 D
nX

iD1
f�.i/	.f�.i/g/ D

nX

iD1
fi	.fig/: (4.37)

(See also Corollary 4.37 and Theorem 4.63.)

4.6 Properties

Beforehand, we introduce the important property of stochastic dominance, related to
decumulative functions, which is a central notion in decision under risk (Sect. 5.2).

Definition 4.23 We consider functions in B.F/ (or BC.F/ according to the
context). For two such functions f ; g and a capacity 	, f is said to stochastically
dominates (at first order) g w.r.t 	, denoted by f >	

SD g, if G	; f .t/ > G	;g.t/ for
every t 2 R.

In this book, because only first order stochastic dominance is considered, we drop
the term “first order.”
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4.6.1 The Choquet Integral

Elementary Properties

We recall that BV.F/ is the set of games of bounded variation norm (Sect. 2.19.1).

Theorem 4.24 Let f W X ! R be a function in B.F/ and v 2 BV.F/. The
following properties hold.

(i) Positive homogeneity:

Z

˛f dv D ˛

Z

f dv .˛ > 0/

(ii) Homogeneity of the symmetric Choquet integral:

LZ
˛f dv D ˛

LZ
f dv .˛ 2 R/

(iii) Translation invariance:

Z

. f C ˛1X/ dv D
Z

f dv C ˛v.X/ .˛ 2 R/

(iv) Asymmetry:

Z

.�f / dv D �
Z

f dv

where v is the conjugate game;
(v) Scale inversion:

Z

.˛1X � f / dv D ˛v.X/ �
Z

f dv .˛ 2 R/

(vi) Monotonicity (or nondecreasingness) w.r.t. the integrand: for any capacity	,

f 6 f 0 )
Z

f d	 6
Z

f 0 d	 . f ; f 0 2 B.F//

(vii) Monotonicity w.r.t. the game for nonnegative integrands: if f > 0,

v 6 v0 )
Z

f dv 6
Z

f dv0 .v; v0 2 BV.F//
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(viii) Monotonicity w.r.t. stochastic dominance: for any capacity 	,

f >	
SD f 0 )

Z

f d	 >
Z

f 0 d	 . f ; f 0 2 B.F//

(ix) Linearity w.r.t. the game:

Z

f d.v C ˛v0/ D
Z

f dv C ˛

Z

f dv0 .v; v0 2 BV.F/; ˛ 2 R/

(x) Boundaries: inf f and sup f are attained:

inf f D
Z

f d	min; sup f D
Z

f d	max;

with 	min.A/ D 0 for all A � X, A 2 F , 	min.X/ D 1, and 	max.A/ D 1 for
all nonempty A 2 F (Sect. 2.8.1);

(xi) Boundaries: for any normalized capacity 	,

ess inf	 f 6
Z

f d	 6 ess sup	 f

(xii) Lipschitz continuity:

ˇ
ˇ
ˇ
ˇ

Z

f dv �
Z

g dv

ˇ
ˇ
ˇ
ˇ 6 kvkk f � gk . f ; g 2 B.F//;

where kvk is the variation norm of v (Sect. 2.19.1) and k f k D supx2X j f .x/j.
Proof

(i) Observe that ˛f .x/ > t is equivalent to f .x/ > t
˛

. By performing the change
of variable t ! t0 D t

˛
in (4.13), the result is established.

(ii) If ˛ > 0, using (i) in (4.10) gives the desired result. Suppose then ˛ < 0.

By using (4.11) (still valid for games), we have LR ˛f dv D � LR j˛j f dv D
�j˛j LR f dv D ˛ LR f dv.

(iii) see Theorem 4.12.
(iv) We have

Z

.�f / dv D
Z 1

0

v.�f > t/ dt C
Z 0

�1
�
v.�f > t/ � v.X/

�
dt

D
Z 0

�1
v.�f > �t/ dt �

Z 1

0

�
v.X/� v.�f > �t/

�
dt

D
Z 0

�1
v. f 6 t/ dt �

Z 1

0

�
v.X/� v. f 6 t/

�
dt
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D �
Z 0

�1
�v. f < t/ dt �

Z 1

0

�
v.X/� v. f < t/

�
dt

D �
Z 0

�1
�
v. f > t/ � v.X/� dt �

Z 1

0

v. f > t/ dt D �
Z

f dv:

(v) Immediate from (iii) and (iv).
(vi) f 6 f 0 implies f f > tg � f f 0 > tg, and by monotonicity of 	, we get 	. f >

t/ 6 	. f 0 > t/ for each t 2 R, which yields the result by (4.13).
(vii) and (viii) are obvious (see Fig. 4.4), as well as (ix).

(x) By translation invariance (iii), it suffices to show the result for nonnegative
functions. Since 	min and 	max are 0-1-capacities, by properties of the decu-
mulative function (see Lemma 4.3), it is plain that

R
f d	min D ess inf	min f

and
R

f d	max D ess sup	max
f . Finally, observe that ess inf	min f D inf f and

ess sup	max
f D sup f .

(xi) Since 	min 6 	 6 	max for any normalized capacity 	, monotonicity w.r.t.
capacities (vii) and (x) permit to conclude.

(xii) (We follow Marinacci and Montrucchio [235].) Suppose first that v is a
capacity. Assume

R
f dv >

R
g dv (the other case is similar). As f 6 g C

k f �gk, we have by (iii) and (vi)
R

f dv 6
R

g dvCk f �gkv.X/. This implies

ˇ
ˇ
ˇ
ˇ

Z

f dv �
Z

g dv

ˇ
ˇ
ˇ
ˇ 6 v.X/k f � gk; (4.38)

which is (xii) for v monotone because in this case kvk D v.X/. Suppose now
that v 2 BV.F/. By Aumann and Shapley [11], we know that v can be written
as v D 	1 �	2, where 	1; 	2 are capacities such that kvk D 	1.X/C 	2.X/
(see Sect. 2.19.1). By (4.38), we have then

ˇ
ˇ
ˇ
ˇ

Z

f dv �
Z

g dv

ˇ
ˇ
ˇ
ˇ 6

ˇ
ˇ
ˇ
ˇ

Z

f d	1 �
Z

g d	1

ˇ
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
ˇ

Z

f d	2 �
Z

g d	2

ˇ
ˇ
ˇ
ˇ

6 .	1.X/C 	2.X//k f � gk;

as desired. ut
Remark 4.25

(i) It is easy to check that the symmetric Choquet integral satisfies proper-
ties (vi), (vii) and (ix) as well. However, (viii) is not satisfied in general, as one
can see on the following example: take X D fx1; x2; x3g and consider the two
functions f D .�2;�1; 1/ and g D .�1;�2; 1/. Observe that f >	SD g as soon
as 	.fx1; x3g/ < 	.fx2; x3g/. However, the integrals on the negative parts are:

Z

f � d	 D 	.fx1; x2g/C 	.fx1g/;
Z

g� d	 D 	.fx1; x2g/C 	.fx2g/:
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Hence LR f d	 < LR g d	 as soon as 	.fx1g/ > 	.fx2g/, which is not in
contradiction with the former inequality.

(ii) The meaning of scale inversion becomes clear if the upper bound of the range
of j f j is ˛ and if v is normalized. Then

R
.˛1X � f / dv D ˛ � R

f dv.
(iii) Lipschitz continuity implies uniform continuity and therefore ordinary

continuity. It follows by (4.10) that the symmetric integral is continuous. }

Comonotonic Additivity

As it is easy to see, the Choquet integral is not additive, in the sense that
R
. f Cg/ dv

is in general different from
R

f dv C R
g dv. Indeed, taking simply f D 1A; g D 1B

with A;B disjoint subsets of X, we find by using Lemma 4.9 that
R
.1A C 1B/ dv D

v.A [ B/, and unless v is itself additive, it differs from v.A/C v.B/.
We introduce now the notion of comonotonicity, which will reveal to be sufficient

and necessary to ensure the additivity of the Choquet integral.

Definition 4.26 Two functions f ; g W X ! R are comonotonic if

�
f .x/ � f .x0/

��
g.x/� g.x0/

�
> 0 .x; x0 2 X/:

Equivalently, there is no x; x0 2 X such that f .x/ < f .x0/ and g.x/ > g.x0/. Roughly
speaking, two comonotonic functions have a similar pattern of variation, however
one should be careful that comonotonicity is in fact more demanding than simply
to be increasing and decreasing on the same domains (see Fig. 4.7). Note also
that a constant function is comonotonic with any other function. From this, one
deduces that the binary relation “is comonotonic with” is reflexive, symmetric, but
not transitive. We start by showing some equivalent conditions.

x x

f

g

Fig. 4.7 Although f and g are increasing and decreasing on the same domain, they are not
comonotonic because f .x/ > f .x0/ and g.x/ < g.x0/

Lemma 4.27 Let f ; g W X ! R. The following propositions are equivalent.

(i) f and g are comonotonic;
(ii) There exist nondecreasing functions u; v W R ! R and a function h W X ! R

such that f D u ı h and g D v ı h.
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(iii) The collection f. f > t/gt2R [ f.g > t/gt2R is a chain;

Moreover, suppose now that X is finite with jXj D n. Then

(iv) f D . f1; : : : ; fn/ and g D .g1; : : : ; gn/ are comonotonic if and only if there exists
a permutation � on X such that f�.1/ 6 � � � 6 f�.n/ and g�.1/ 6 � � � 6 g�.n/.

Proof (i))(ii): Assume that f is not constant, otherwise if both f ; g are constant, the
result holds trivially. Choose any increasing function u on R and define h D u�1 ı f .
Now, define v W ran h ! R as follows: for any x 2 X, put v.h.x// D g.x/. Let
us show that v is nondecreasing on ran h. Take x; x0 2 X such that h.x/ > h.x0/,
which is possible because f is not constant and u is increasing. This is equivalent to
u�1. f .x// > u�1. f .x0//, which is in turn equivalent to f .x/ > f .x0/. Since f ; g are
comonotonic, it follows that g.x/ > g.x0/.

(ii))(iii): Take ˛; ˛0 2 R and consider the level sets f f > ˛g and fg > ˛0g. We
have

f f > ˛g D fu ı h > ˛g D fh > ˇg
with ˇ D inf u�1.˛/. Similarly, fg > ˛0g D fh > ˇ0g, with ˇ0 D inf v�1.˛0/. These
two level sets are then in inclusion relation.

(iii))(i): Suppose there exist x; x0 2 X such that f .x/ < f .x0/ and g.x/ > g.x0/.
Consider the level sets A D f f > f .x0/g and B D fg > g.x/g. Then x 2 B n A and
x0 2 A n B; i.e., it cannot be that A � B or B � A.

(iv) This is clear from the definition. ut
Theorem 4.28 (Comonotonic additivity of the Choquet integral) Let f ; g 2
B.F/ be comonotonic functions such that f C g 2 B.F/. Then for any game v
in BV.F/, the Choquet integral is comonotonically additive, that is,

Z

. f C g/ dv D
Z

f dv C
Z

g dv:

We give the proof for the discrete case, assuming F D 2X . For a general proof, see
Marinacci and Montrucchio [235] or Denneberg [80].

Proof Observe that if f ; g are comonotone, then f C g is comonotone with f and
with g. Then by Lemma 4.27(iv), there exists a common permutation � increasingly
ordering f ; g and f C g. The result is then obvious by (4.27). ut
Remark 4.29 The notion of comonotonicity as well as the above result is due to
Dellacherie [76]. }

Horizontal Additivity

There is another way—and as we will see, equivalent to comonotonic additivity—to
characterize the additivity of the Choquet integral, called horizontal min- (or max-)
additivity.
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Given a function f W X ! R and a constant c 2 R, the horizontal min-additive
decomposition of f is:

f D . f ^ c1X/C . f � . f ^ c1X//: (4.39)

This amounts to “cut” horizontally the function at level c. Similarly, the horizontal
max-additive decomposition of f is:

f D . f _ c1X/C . f � . f _ c1X//: (4.40)

A functional I W RX ! R is horizontally min-additive if for every f W X ! R and
c 2 R,

I. f / D I. f ^ c1X/C I. f � . f ^ c1X//: (4.41)

Horizontal max-additivity is defined similarly.
We note that f ^ c1X and f � . f ^ c1X/ are comonotonic functions, as well as

. f _ c1X/ and . f � . f _ c1X//. It follows that if a functional satisfies comonotonic
additivity, then it also satisfies horizontal min- and max-additivity. The converse is
also true, as shown in the next theorem.

Theorem 4.30 Suppose jXj D n and F D 2X. A functional I W R
n ! R is

comonotonically additive if and only if it is horizontally min-additive (equivalently,
horizontally max-additive).

Proof Due to the above remark, we only have to prove that horizontal min-additivity
implies comonotonic additivity (the proof for horizontal max-additivity is much the
same).

0. We claim that I satisfies I.�˛1X/ D �I.˛1X/ for all ˛ 2 R. First we prove that
I.0/ D 0. Taking ˛ > 0 and applying horizontal min-additivity with c D 0, we
find

I.˛1X/ D I.0/C I.˛1X � 0 � 1X/ D I.0/C I.˛1X/

which forces I.0/ D 0. Next, considering ˛ > 0, we have by horizontal min-
additivity with c D �˛

0 D I.0/ D I.�˛1X/C I.˛1X/;

and the claim is proved.
1. We claim that I satisfies

I..x C y/1X/ D I.x1X/C I.y1X/ .x; y 2 R/: (4.42)
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Take x; y 2 R, with at most one negative number, and suppose x 6 y. Choose
c D x. Horizontal min-additivity implies

I..xCy/1X / D I...xCy/^x/1X /CI..xCy/1X �...xCy/^x/1X // D I.x1X/CI.y1X/:

Now, if both x; y are negative, by Claim 0 and the above result we have

I..x C y/1X/ D �I..�x � y/1X/ D �.I.�x1X/C I.�y1X// D I.x1X/C I.y1X/:

2. We claim that I satisfies

I..x C y/1A/ D I.x1A/C I.y1A/ .x; y > 0;A � X/: (4.43)

Take x; y > 0, suppose x 6 y, and choose c D x. Proceeding as above, the claim
is shown (note that it is not true if x or y is negative).

3. We claim that I satisfies for any function f 2 R
X

I. f / D I. f�.1/1X/C
nX

iD2
I.. f�.i/ � f�.i�1//1A"

� .i/
/; (4.44)

where � is a permutation on X such that f�.1/ 6 � � � 6 f�.n/. By repeatedly
applying horizontal min-additivity on f with the successive level sets f�.1/; f�.2/�
f�.1/; : : : ; f�.n/ � f�.n�1/, we obtain

I. f / D I. f�.1/1X/C I.0; f�.2/ � f�.1/; : : : ; f�.n/ � f�.1//

D I. f�.1/1X/C I.. f�.2/ � f�.1//1A"

� .2/
/C I.0; 0; f�.3/ � f�.2/; : : : ; f�.n/ � f�.2//

D � � � D

D I. f�.1/1X/C
nX

iD2

I.. f�.i/ � f�.i�1//1A"

� .i/
/:

4. Consider any two functions f ; f 0 2 R
X that are comonotonic. By Lemma 4.27(iv),

we have, using Claims 1, 2 and 3 above:

I. f C f 0/ D I.. f C f 0/�.1/1X/C
nX

iD2
I... f C f 0/�.i/ � . f C f 0/�.i�1//1A"

� .i/
/

D I.. f�.1/ C f 0
�.1//1X/C

nX

iD2
I.. f�.i/ C f 0

�.i/ � f�.i�1/ � f 0
�.i�1//1A"

� .i/
/
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D I. f�.1/1X/C I. f 0
�.1/1X/C

nX

iD2
I.. f�.i/ � f�.i�1//1A"

� .i/
/

C
nX

iD2
I.. f 0

�.i/ � f 0
�.i�1//1A"

� .i/
/

D I. f /C I. f 0/:
ut

By application of Theorems 4.28 and 4.30, we obtain immediately:

Corollary 4.31 Let jXj D n, F D 2X. The Choquet integral is horizontally min-
and max-additive.

Remark 4.32 Horizontal min- and max additivity was introduced by Šipoš [334],
and also considered by Benvenuti et al. [19]. Theorem 4.30 was shown by Couceiro
and Marichal [58]. Also, the two functions f _ c1X and f � . f _ c1X/ are maxmin-
related in the sense of Wakker [337]. Two functions f ; g are maxmin-related if one
of them plays the rôle of the max-function (say f ) and the other one the rôle of the
min-function, that is, for every x 2 X, either the max-function assigns its maximal
value or the min-function assigns its minimal value. This property is used in [337]
to characterize the Choquet integral. }

Lastly, we introduce a third type a horizontal additivity, which is a mix of the two
preceding ones, called horizontal median additivity (Couceiro and Marichal [58]).
Given a function f W X ! R and a constant c > 0, the horizontal median-additive
decomposition of f is:

f D med.�c; f ; c/C . f � . f ^ c1X//C . f � . f _ �c1X//; (4.45)

where med.�c; f ; c/ 2 R
n, with ith coordinate being the middle value of �c, fi, and

c (Fig. 4.8).
A functional I W RX ! R is horizontally median-additive if for every f 2 R

X and
c > 0,

I. f / D I.med.�c; f ; c//C I. f � . f ^ c1X//C I. f � . f _ �c1X//: (4.46)

As it can be checked, med.�c; f ; c/, . f �. f ^c1X// and . f �. f _�c1X// are pairwise
comonotonic functions, so that if I is comonotonic additive it is also horizontally
median-additive. We note also that if I is horizontally median-additive, we have that
I.0/ D 0 (apply (4.46) with f D 0 and c D 0), and for any function f ,

I. f / D I. f C/C I.�f �/ (4.47)

(apply (4.46) with c D 0).
The following result sheds light on the connection between the three types of

horizontal additivity.
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c

−c

x

f(x)

c

−c

x

med(−c, f, c)

f − (f ∧ c1X)

f − (f ∨ −c1X)

Fig. 4.8 Horizontal median-additive decomposition: mapping f (left) and its decomposition
(right)

Lemma 4.33 (Couceiro and Marichal [58]) Let I W RX ! R be a functional. The
following propositions are equivalent:

(i) I is horizontally median-additive;
(ii) I is horizontally min-additive on R

XC with c > 0, horizontally max-additive on
R

X� with c 6 0, and satisfies (4.47).

Proof (i))(ii): we show horizontal min-additivity for nonnegative functions only.
For any f W X ! RC, we have by horizontal median-additivity

I. f / D I. f ^ c1X/C I. f � . f ^ c1X//C I.0/
„ƒ‚…

0

;

which is horizontal min-additivity.
(ii))(i): Applying (4.47) to the function med.�c; f ; c/, we obtain:

I.med.�c; f ; c// D I. f C ^ c1X/C I..�f �/ _ .�c1X//: (4.48)

On the other hand, we have

I. f / D I. f C/C I.�f �/ (by (4.47)

D �
I. f C ^ c1X/C I. f C � . f C ^ c1X//

�C
�
I..�f �/ _ .�c1X//C I.�f � � ..�f �/ _ .�c1X///

�
(by hor. min/max-add.)

D I.med.�c; f ; c//C I. f � . f ^ c1X//

C I. f � . f _ .�c1X///; (by (4.48)

which is horizontal median-additivity. ut
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Comonotonic Modularity

A functional I W RX ! R is modular if for every f ; g W X ! R,

I. f _ g/C I. f ^ g/ D I. f /C I.g/: (4.49)

It is easy to see that an additive functional is always modular:

I. f /C I.g/ D I. f C g/ D I.. f _ g/C . f ^ g// D I. f _ g/C I. f ^ g/;

but the converse is false (take jXj D 2 and I. f / D f 21 C f 22 : it is modular
but not additive). When X is finite, Topkis [327] has shown that a modular
functional has necessarily the form I D Pn

iD1 'i, with 'i W R ! R and n D
jXj.

A functional I W RX ! R is maxitive if I. f _ g/ D I. f / _ I.g/ for all f ; g 2 R
X ,

and minitive if I. f ^ g/ D I. f /^ I.g/. If a functional is both maxitive and minitive,
then it is modular:

I. f _ g/C I. f ^ g/ D .I. f / _ I.g//C .I. f / ^ I.g// D I. f /C I.g/:

Again, the converse is false (take the same example as before).
The above notions can be turned into their comonotonic version: I is

comonotonically modular (respectively, comonotonically maxitive, minitive) if it
is modular (respectively, maxitive, minitive) for comonotonic functions. It follows
that

(i) Comonotonic additivity implies comonotonic modularity;
(ii) Comonotonic maxitivity and comonotonic minitivity imply comonotonic mod-

ularity.

Corollary 4.34 Let f ; g 2 B.F/ be comonotonic functions such that f C g 2 B.F/.
Then for any game in BV.F/, the Choquet integral is comonotonically modular:

Z

. f _ g/ dv C
Z

. f ^ g/ dv D
Z

f dv C
Z

g dv:

Concavity

We continue with properties related to additivity and concavity. The next important
result shows that the Choquet integral is superadditive (equivalently, concave) if and
only if the game is supermodular.

Theorem 4.35 (Superadditivity of the Choquet integral) For any game v 2
BV.F/, the following conditions are equivalent:

(i) v is supermodular;
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(ii) The Choquet integral is superadditive on B.F/, that is,

Z

. f C g/ dv >
Z

f dv C
Z

g dv

for all f ; g 2 B.F/ such that f C g 2 B.F/;
(iii) The Choquet integral is supermodular on B.F/, that is,

Z

. f _ g/ dv C
Z

. f ^ g/ dv >
Z

f dv C
Z

g dv

for all f ; g 2 B.F/;
(iv) The Choquet integral is concave on B.F/, that is,

Z

.�f C .1 � �/g/ dv >
Z

�f dv C .1 � �/
Z

g dv

for all � 2 Œ0; 1�, f ; g 2 B.F/ such that �f C .1 � �/g 2 B.F/.

Proof (Marinacci and Montrucchio [235])
(i))(ii) Consider f 2 BC.F/ and S 2 F . We have

f f C 1S > tg D f f > tg [ fS \ f f > t � 1gg;

and so f C 1S 2 BC.F/. This implies that f C g 2 BC.F/ for any simple function.
Moreover, as v is supermodular, we get

v. f C 1S > t/ > v. f > t/C v.S \ . f > t � 1//� v.S \ . f > t//:

Consequently,

Z

. f C 1S/ dv D
Z

1

0

v. f C 1S > t/ dt

>
Z

1

0

v. f > t/ dt C
Z

1

0

v.S \ . f > t � 1// dt �
Z

1

0

v.S \ . f > t// dt

D
Z

f dv C
Z 0

�1

v.S \ . f > t// dt D
Z

f dv C v.S/:

As the Choquet integral is positively homogeneous, we have for any � > 0

Z

. f C �1S/ dv D �

Z � f

�
C 1S

�
dv > �

� Z f

�
dv C v.S/

�

D
Z

f dv C �v.S/: (4.50)
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Let g 2 BC.F/ be a simple function. By using its horizontal decomposition (4.1)
g D Pn

iD1 �i1Di with �i > 0 for i D 1; : : : ; n and D1 � D2 � � � � Dn, we can write,
using (4.50):

Z

. f C g/ dv D
Z �

f C
nX

iD1
�i1Di

�
dv >

Z �
f C

nX

iD2
�i1Di

�
dv C �1v.D1/

> � � � >
Z

f dv C
nX

iD1
�iv.Di/ D

Z

f dv C
Z

g dv;

as desired, where the last equality obtains from (4.17). Now, the inequalityR
. f C g/ dv >

R
f dv C R

g dv holds for any f ; g 2 B.F/ because of translation
invariance and continuity of the integral [Theorem 4.24(xii)].

(ii))(i) Given any sets A;B 2 F , we have

1A[B C 1A\B D 1A C 1B:

Observe that 1A[B and 1A\B are comonotonic functions, therefore by Theorem 4.28,
we get

v.A [ B/C v.A \ B/ D
Z

1A[B dv C
Z

1A\B dv D
Z

.1A[B C 1A\B/ dv

D
Z

.1A C 1B/ dv >
Z

1A dv C
Z

1B dv D v.A/C v.B/;

hence v is supermodular.
(i))(iii) As the Choquet integral is translation invariant, it is enough to prove

the result for nonnegative f ; g. The following holds for each t > 0:

f f _ g > tg D f f > tg [ fg > tg
f f ^ g > tg D f f > tg \ fg > tg:

Supermodularity of v yields

v. f _ g > t/C v. f ^ g > t/ > v. f > t/C v.g > t/:
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It follows that
Z

. f _ g/ dv C
Z

. f ^ g/ dv D
Z 1

0

v. f _ g > t/ dt C
Z 1

0

v. f ^ g > t/ dt

D
Z 1

0

�
v. f _ g > t/C v. f ^ g > t/

�
dt

>
Z 1

0

�
v. f > t/C v.g > t/

�
dt D

Z

f dvC
Z

g dv;

as desired.
(iii))(i) We have 1A _ 1B D 1A[B and 1A ^ 1B D 1A\B. Hence, putting f D 1A

and g D 1B, supermodularity of the integral yields supermodularity of v.
(ii),(iv) holds because of positive homogeneity (see Sect. 1.3.7). ut

Remark 4.36

(i) The equivalence (i),(iii) was remarked by Lovász [226].
(ii) By asymmetry of the integral [Theorem 4.24(iv)] and the fact that the conjugate

of supermodular games are submodular [Theorem 2.20(ii)], a similar theorem
holds for submodular games, with all inequalities inverted. }

A consequence of the above remark is that the Choquet integral is additive if
and only if v is modular; i.e., additive, because F is assumed to be an algebra
(Theorem 2.117).

Corollary 4.37 (Additivity of the Choquet integral) For any game v 2 BV.F/,
the Choquet integral is additive on B.F/ if and only if v is additive.

The next result is established in the discrete case. We recall that for any game v
on X D fx1; : : : ; xng and any permutation � on X, the marginal vector �;v is defined
by


�;v
�.i/ D v.fx�.1/; : : : ; x�.i/g/� v.fx�.1/; : : : ; x�.i�1/g/

(see Sect. 3.2.2 with a different notation). Identifying the vector �;v with an additive
measure, we get the following result.

Lemma 4.38 Suppose jXj D n and take F D 2N. If v is supermodular, then for
any f on X and any permutation � on X,

Z

f dv 6
Z

f d�;v

with equality if f�.1/ > � � � > f�.n/.

Proof Suppose f�.1/ > � � � > f�.n/. Then
R

f dv expressed with (4.31) corresponds
to
R

f d�;v given by (4.37).
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Suppose on the contrary that � ¤ Id does not order f in decreasing order.
Without loss of generality, consider that f1 > f2 > � � � > fn. It is a standard
result from combinatorics that one can go from the identity permutation to �

by elementary switches exchanging only 2 neighbor elements; i.e., we have the
sequence

� D Id ! � � �� 0 ! � 00 ! � � � ! �

with in each step � 0. j/ D � 00. j/ except for j D i; i C 1 for some 1 6 i < n, where
� 0.i/ D � 00.i C 1/ and � 0.i C 1/ D � 00.i/. Consider two consecutive � 0; � 00 in the
sequence differing on i; i C 1; we have by (4.37),

Z

f d�
0;v D

nX

jD1

f� 0. j/.v.A
#

� 0. j// � v.A#

� 0. j � 1/// D
nX

jD1

. f� 0. j/ � f� 0. jC1//v.A
#

� 0. j//

D
i�2X

jD1

. f� 0. j/ � f� 0. jC1//v.A
#

� 0. j//C . f� 0.i�1/ � f� 0.i//v.A
#

� 0.i � 1//

C . f� 0.i/ � f� 0.iC1//v.A
#

� 0.i//C . f� 0.iC1/ � f� 0.iC2//v.A
#

� 0.i C 1//

C
nX

jDiC2

. f� 0. j/ � f� 0. jC1//v.A
#

� 0. j//

6
i�2X

jD1

. f� 00. j/ � f� 00. jC1//v.A
#

� 00. j//

C . f� 00.i�1/ � f� 00.iC1//v.A
#

� 00.i � 1//
C . f� 00.iC1/ � f� 00.i//.v.A

#

� 00.i C 1//C v.A#

� 00.i � 1//� v.A#

� 00.i///

C . f� 00.i/ � f� 00.iC2//v.A
#

� 00.i C 1//C
nX

jDiC2

. f� 00. j/ � f� 00. jC1//v.A
#

� 00. j//

D
nX

jD1

f� 00. j/.v.A
#

� 00. j// � v.A#

� 00. j � 1/// D
Z

f d�
00;v ;

where in the inequality we have used supermodularity of v, and the fact that
f� 0.i/ � f� 0.iC1/ > 0, because � 0.i/ < � 0.i C 1/ (by construction, i and i C 1 have not
been switched before). It follows that

R
f dv 6

R
f d�;v. ut

From the above lemma, the following fundamental result is immediate (see Defini-
tion 3.1 for a definition of core.v/).

Theorem 4.39 (The Choquet integral as a lower expected value) Suppose jXj D
n and F D 2X. Then for any function f on X, the game v is supermodular if and
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only if

Z

f dv D min
2core.v/

Z

f d; (4.51)

where  2 core.v/ is identified with an additive measure.

Proof Suppose that v is supermodular. By Theorem 3.15, we know that any core
element  is a convex combination of all marginal vectors:  D P

� ��
�;v with

�� > 0 and
P

� �� D 1. Using Lemma 4.38, we have by linearity of the integral
[Theorem 4.24(ix)]

Z

f dv D
X

�

�
��

Z

f dv
�

6
X

�

�
��

Z

f d�;v
�

D
Z

f d
�X

�

��
�;v
�

D
Z

f d

for any core element . Since by Lemma 4.38, equality is satisfied for at least one
�;v , (4.51) holds.

Conversely, suppose that (4.51) holds for any f . Take any function f such that
f�.1/ > � � � > f�.n/. Letting A#

� .i/ D fx�.1/; : : : ; x�.i/g, there exists a core element 
such that

Z

f dv D
nX

iD1
. f�.i/ � f�.iC1//v.A#

� .i// D
nX

iD1
. f�.i/ � f�.iC1//.A#

� .i// D
Z

f d:

(4.52)

Since  2 core.v/, we have .A#
� .i// > v.A#

� .i//, hence nonnegativity of f�.i/ �
f�.iC1/ and (4.52) force .A#

� .i// D v.A#
� .i//; i.e.,  is the marginal vector �;v [see

(3.8) and (3.9)]. This being true for any f on X, it follows that for any permutation
� on X, the marginal vector �;v belongs to the core, a condition that is equivalent
to supermodularity of v (see Theorem 3.15). ut
Remark 4.40

• Again, as explained in Remark 4.36, results similar to Lemma 4.38 and Theo-
rem 4.39 hold for submodular games, with inequalities inverted, min changed to
max and the core changed to the anticore (that is, the set of efficient vectors 
satisfying .S/ 6 v.S/ for all S 2 2X; see Sect. 3.1): the Choquet integral for
submodular games is an upper expected value on the anticore.

• Dempster [77, Sect. 2] has shown that (4.51) holds for belief measures, a
particular case of supermodular capacities.

• A result similar to Theorem 4.39 holds for the Sugeno integral; see Sect. 7.7.4.

}
Recalling from Sect. 1.3.7 the notion of support function of a convex set,

Theorem 4.39 merely says that for supermodular games, the Choquet integral is
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the support function of the core, because the right-hand of (4.51) can be rewritten
as minx2core.v/hf ; xi, considering f ; x as vectors in R

n. A simple application of
Theorem 1.12 leads to the following corollary.

Corollary 4.41 (The core as the superdifferential of the Choquet integral)
(Danilov and Koshevoy [66]) Suppose jXj D n and F D 2X. Then for any
supermodular8 game v on X,

core.v/ D @
� Z

� dv
�
.0/:

Remark 4.42 By Theorem 1.12 again, the support function is positively homo-
geneous and concave (or equivalently, superadditive). Hence, Lemma 4.38 and
Theorem 4.39 constitute another proof of the equivalence of (i) and (ii) in Theo-
rem 4.35. }

4.6.2 The Sugeno Integral

Theorem 4.43 Let f be a function in BC.F/, and 	 a capacity on .X;F/. The
following properties hold.

(i) Positive ^-homogeneity:

�
Z

.˛1X ^ f / d	 D ˛ ^ �
Z

f d	 .˛ > 0/

(ii) Positive _-homogeneity if ess sup	 f 6 	.X/:

�
Z

.˛1X _ f / d	 D ˛ _ �
Z

f d	 .˛ 2 Œ0; ess sup	 f �/:

(iii) Hat function: for every ˛ > 0 and for every A 2 F ,

�
Z

˛1A d	 D ˛ ^ 	.A/

(iv) Scale inversion: if ess sup	 f 6 	.X/,

�
Z

.	.X/1X � f / d	 D 	.X/� �
Z

f d	;

where 	 is the conjugate capacity;

8In Danilov and Koshevoy [66], the condition of supermodularity was overlooked.
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(v) Scale translation:

�
Z

. f C ˛1X/ d	 6 �
Z

f d	C �
Z

˛ d	 D �
Z

f d	C ˛ ^ 	.X/ .˛ > 0/

(vi) Monotonicity (or nondecreasingness) w.r.t. the integrand:

f 6 f 0 ) �
Z

f d	 6 �
Z

f 0 d	 . f ; f 0 2 BC.F//

(vii) Monotonicity w.r.t. the capacity:

	 6 	0 ) �
Z

f d	 6 �
Z

f d	0 .	; 	0 on .X;F//

(viii) Monotonicity w.r.t. stochastic dominance:

f >	
SD f 0 ) �

Z

f d	 > �
Z

f 0 d	 . f ; f 0 2 BC.F//

(ix) Max-min linearity w.r.t. the capacity:

�
Z

f d.	_.˛^	0// D �
Z

f d	 _
�
˛^�
Z

f d	0� .	;	0 capacities on .X;F/; ˛ > 0/

(x) Boundaries: inf f and sup f are attained:

inf f D �
Z

f d	min; sup f D �
Z

f d	max;

with 	min.A/ D 0 for all A � X, A 2 F , and 	max.A/ D 1 for all nonempty
A 2 F ;

(xi) Boundaries:

ess inf	 f 6 �
Z

f d	 6 .ess sup	 f / ^ 	.X/

(xii) Lipschitz continuity:

ˇ
ˇ
ˇ
ˇ�
Z

f d	� �
Z

g d	

ˇ
ˇ
ˇ
ˇ 6 	.X/ ^ k f � gk . f ; g 2 BC.F//
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with k f k D supx2X j f .x/j (Chebyshev norm). Hence, if 	 is normalized and
f ; g are valued on Œ0; 1�, we obtain that the Sugeno integral is 1-Lipschitzian
for the Chebyshev norm.

Proof (i) Note that

f f ^ ˛1X > tg D
(

f f > tg; if t 6 ˛

¿; otherwise;

which yields

G	; f ^˛1X .t/ D
(

G	; f .t/; if t 6 ˛

0; otherwise:

It follows that

�
Z

.˛1X ^ f / d	 D
_

t>0
.G	; f ^˛1X .t/^ t/ D

_

t2Œ0;˛�
.G	; f .t/^ t/_

_

t>˛

.0 ^ t/

„ ƒ‚ …
0

: (4.53)

Observe that if �R f d	 6 ˛, then
W

t2Œ0;˛�.G	; f .t/ ^ t/ D �R f d	, otherwiseW
t2Œ0;˛�.G	; f .t/ ^ t/ D ˛. We conclude that

�
Z

. f ^ ˛1X/ d	 D ˛ ^ �
Z

f d	:

(ii) For max-homogeneity, we have for any ˛ 2 Œ0; ess sup	 f �

f f _ ˛1X > tg D
(

f f > tg; if t > ˛

X; otherwise;

which yields

G	; f _˛1X .t/ D
(

G	; f .t/; if t > ˛

	.X/; otherwise:
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Hence

�
Z

.˛1X ^ f / d	 D
^

t2Œ0;ess sup	 f �

.G	; f _˛1X .t/ _ t/

D
^

t2Œ0;˛Œ
.	.X/_ t/

„ ƒ‚ …
	.X/

^
^

t2Œ˛;ess sup	 f �

.G	; f .t/ _ t/:

As it can be checked,
V

t2Œ˛;ess sup	 f �.G	; f .t/ _ t/ D ˛ _ �R f d	. Since by

assumption, ess sup	 f 6 	.X/, by (x) we deduce �R f d	 6 	.X/. In summary,
V

t2Œ0;ess sup	 f �.G	; f _˛1X .t/ _ t/ D ˛ _ �R f d	 as desired.
(iii) We have for any A 2 F

�
Z

˛1A dv D
_

t>0
.Gv;˛1A.t/ ^ t/ D

_

t2Œ0;˛�
.v.A/ ^ t/ _

_

t>˛

.v.¿/ ^ t/

„ ƒ‚ …
0

D v.A/ ^ ˛:

(iv) We use the fact that for any numbers xi 2 Œ0; a�, i 2 J, we have _i2J.a�xi/ D
a � ^i2Jxi, and ^i2J.a � xi/ D a � _i2Jxi. We get:

�
Z

.	.X/1X � f / d	 D
^

t2Œ0;	.X/�

�
t _ 	.f	.X/1X � f > tg/�

D
^

t02Œ0;	.X/�

�
.	.X/� t0/ _ 	.f f 6 t0g/�

with t0 D 	.X/� t. Now, by Remark 4.7

	.X/� �
Z

f d	 D 	.X/�
_

t2Œ0;	.X/�

�
t ^ 	.f f > tg/�

D 	.X/�
_

t2Œ0;	.X/�

�
t ^ .	.X/� 	.f f 6 tg//�

D
^

t2Œ0;	.X/�

�
	.X/� .t ^ .	.X/� 	.f f 6 tg///�

D
^

t2Œ0;	.X/�

�
.	.X/� t/ _ 	.f f 6 tg/�;

which completes the proof.
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(v) Using (4.5), we obtain:

�
Z

. f C ˛1X/ d	 D
_

A2F

�^

x2A

. f .x/C ˛/ ^ 	.A/
�

6
_

A2F

��^

x2A

f .x/ ^ 	.A/
�

C .˛ ^ 	.A//
�

6
_

A2F

��^

x2A

f .x/ ^ 	.A/
�

C .˛ ^ 	.X//
�

D
_

A2F

�^

x2A

f .x/ ^ 	.A/
�

C .˛ ^ 	.X// D �
Z

f d	C �
Z

˛1X d	;

by (iii).
(vi), (vii) and (viii) work as for the Choquet integral (Theorem 4.24) and are

straightforward.
(ix) We have

�
Z

f d.	 _ .˛ ^ 	0// D
_

t>0

�
G	_.˛^	0/;f .t/ ^ t

�

D
_

t>0

��
	. f > t/ _ .˛ ^ 	0. f > t//

� ^ t
�

D
_

t>0

��
	. f > t/ ^ t

� _ �˛ ^ 	0. f > t/ ^ t/
��

D
_

t>0
.	. f > t/ ^ t/ _

�
˛ ^

�_

t>0
.	0. f > t/ ^ t/

��

D �
Z

f d	 _
�
˛ ^ �

Z

f d	0
�
:

(x) and (xi) The proof uses (vii) and is similar to the one for the Choquet integral
[Theorem 4.24(x) and (xi)].

(xii) Put a D supx2X j f .x/� g.x/j. Then f 6 g C a, and by (vi) and (v) we obtain

�
Z

f d	 6 �
Z

.g C a/ d	 6 �
Z

g d	C .a ^ 	.X//:

Similarly, from g 6 f C a we obtain

�
Z

g d	 6 �
Z

f d	C .a ^ 	.X//;
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from which we deduce that
ˇ
ˇ
ˇ
ˇ�
Z

f d	� �
Z

g d	

ˇ
ˇ
ˇ
ˇ 6 	.X/ ^ sup

x2X
j f .x/� g.x/j:

ut
(v) and a weaker version of (xii) can be found in Wang and Klir [343, Theorem 9.2
and Lemma 9.2].

We turn to properties related to comonotonic functions.

Theorem 4.44 (Comonotonic maxitivity and minitivity of the Sugeno integral)
Let f ; g 2 BC.F/ be comonotonic functions. Then for any capacity 	 on .X;F/,

the Sugeno integral is comonotonically maxitive and comonotonically minitive, that
is:

�
Z

. f _ g/ d	 D �
Z

f d	 _ �
Z

g d	

�
Z

. f ^ g/ d	 D �
Z

f d	 ^ �
Z

g d	:

Proof First f _ g; f ^ g 2 BC.F/ by Lemma 4.1. Let us prove comonotonic
maxitivity. We have

�
Z

. f _ g/ d	 D
_

t>0

�
G	; f _g.t/ ^ t

�
:

Remark that f f _ g > tg D f f > tg [ fg > tg. It follows from Lemma 4.27(iii)
that for any t > 0, either f f > tg � fg > tg or the converse. By monotonicity of
capacities, we deduce that

	.f f _ g > tg/ D 	.f f > tg/ _ 	.fg > tg/

for every t > 0. We then obtain

�
Z

. f _ g/ d	 D
_

t>0

�
.G	; f .t/ _ G	;g.t// ^ t

�

D
_

t>0

�
.G	; f .t/ ^ t/ _ .G	;g.t/ ^ t/

�

D �
Z

f d	 _ �
Z

g d	:

The proof for comonotonic minitivity is obtained in the same way, starting from
�R f d	 D V

t>0.G	; f .t/ _ t/. ut
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Using results of Sect. 4.6.1, we obtain immediately:

Corollary 4.45 The Sugeno integral is comonotonically modular over BC.F/, for
every capacity on .X;F/.

The next theorem shows under which condition the Sugeno integral is maxitive
or minitive.

Theorem 4.46 (Maxitivity/minitivity of the Sugeno integral) The following
holds:

(i) �R . f _g/ d	 D �R f d	_�R g d	 for all f ; g 2 BC.F/ if and only if 	 is maxitive;
(ii) �R . f ^ g/ d	 D �R f d	^ �R g d	 for all f ; g 2 BC.F/ if and only if 	 is minitive.

Proof Suppose that 	 is maxitive. Then for all f ; g 2 BC.F/

�
Z

. f _ g/ d	 D
_

t>0
.t ^ 	. f _ g > t//

D
_

t>0
.t ^ 	.f f > tg [ fg > tg//

D
_

t>0
.t ^ .	. f > t/ _ 	.g > t///

D
_

t>0
.t ^ 	. f > t// _

_

t>0
.t ^ 	.g > t// D �

Z

f d	 _ �
Z

g d	;

where we have used mutual distributivity of _;^. The converse statement is
immediate by taking f D 1A, g D 1B, where A;B are any two sets in F .

The proof for minitivity is similar, starting from �R f d	 D V
t>0.t _G	; f .t//. ut

Next, we give properties relating the two integrals.

Theorem 4.47 Let 	 be a normalized capacity on .X;F/. The following holds.

(i) The equality
R

f d	 D �R f d	 holds for every function f 2 BC.F/ such that
ess sup	 f 6 1 if and only if 	 is a 0-1-capacity;

(ii) For any f 2 BC.F/ such that ess sup	 f 6 1,

ˇ
ˇ
ˇ
ˇ

Z

f d	� �
Z

f d	

ˇ
ˇ
ˇ
ˇ 6 1

4
:

Proof

(i) Suppose 	 is 0-1-valued. Then G	; f is a rectangle of height 1 and width a,
0 < a 6 1. Hence, the area under the decumulative function is a, while the
intersection of the diagonal with G	; f has coordinates .a; a/, which proves the
equality of the integrals.
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Conversely, take 	 such that 0 < 	.A/ < 1 for some A � X, and 0 < ˛ < 1.
Then

Z

˛1A d	 D ˛	.A/ < ˛ ^ 	.A/ D �
Z

˛1A d	;

by Theorem 4.43(iii).
(ii) (Figure 4.9) Let us fix ˛ 2 Œ0; 1�, and consider some f 2 BC.F/ such that

�R f d	 D ˛. This means that the decumulative function intersects the diagonal
exactly at ˛. The smallest possible Choquet integral is obtained for f giving
the decumulative function given by the dashed line, whose area below is ˛2.
Similarly the largest one is obtained by the decumulative function given by the
thick solid line, with area equal to 1 � .1 � ˛/2. The difference between the
Choquet integral and the Sugeno integral is in both cases ˛ � ˛2. This function
attains its maximum value for ˛ D 1

2
, and then the difference is equal to 1

4
.

ut
(See Sect. 4.9 for the expression of the Choquet or Sugeno integral w.r.t 0-1-
capacities.)

1

1

α

α0

Fig. 4.9 Proof of Theorem 4.47(ii)

4.7 Expression with Respect to the Möbius Transform
and Other Transforms

We consider in the whole section that X is a finite set with jXj D n, and that F D 2X .

4.7.1 The Choquet Integral

We have seen in Sect. 2.17 that transforms and bases are dual notions. From this
duality and by linearity of the Choquet integral w.r.t. games, it is easy to establish a
general way to express the Choquet integral in terms of a given linear and invertible
transform.
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Let ‰ be a linear invertible transform, fb‰A gA22X the corresponding basis of
set functions given by Lemma 2.91, and fb0‰

A gA22Xnf¿g the corresponding basis of
games given by (2.110) (see Remarks 4.10(v) and 2.92). Then for every f 2 R

X and
every game v 2 G.X/,

Z

f dv D
Z

f d

 
X

¿¤A�X

‰v.A/b0‰
A

!

D
X

¿¤A�X

‰v.A/
Z

f db0‰
A : (4.54)

It is therefore sufficient to compute
R

f db0‰
A for every A � X, A ¤ ¿.

We give hereafter the expression of the Choquet integral for the main trans-
forms.

(i) The Möbius transform: the associated basis being the family of unanimity
games, let us compute

R
f duA for ¿ ¤ A 2 2X. We denote by � a permutation

on X ordering f in nondecreasing order. Using (4.27), let j be the leftmost index
in the ordered sequence f�.i/; i 2 Ag. Then

R
f duA D fj D ^i2A fi. It follows

from (4.54) that

Z

f dv D
X

A�X

mv.A/
^

i2A

fi: (4.55)

From this and (4.10), we can derive the expression of the symmetric integral
as well:

LZ
f dv D

X

A�X

mv.A/

�^

i2A

f C
i �

^

i2A

f �
i

	

(4.56)

D
X

A�XC

mv.A/
^

i2A

fi C
X

A�X�

mv.A/
_

i2A

fi; (4.57)

where XC D fi 2 X W fi > 0g and X� D X n XC, and f C; f � are defined in
(4.9).

(ii) The co-Möbius transform: let us compute
R

f dLu0
A for ¿ ¤ A 2 2X , where

Lu0
A.B/ D .�1/jAj if A \ B D ¿ and B ¤ ¿, and 0 otherwise (Table A.1). Using

(4.27) with � a permutation on X reordering f in nondecreasing order, we find
easily

Z

f dLu0
A D .�1/jAjC1_

i2A

fi:

It follows that
Z

f dv D
X

¿¤A22X

.�1/jAjC1 Lmv.A/
_

i2A

fi: (4.58)
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Proceeding as above, the expression of the symmetric integral follows imme-
diately:

LZ
f dv D

X

A\XC¤¿

.�1/jAjC1 Lmv.A/
_

i2A

fi C
X

A\X�¤¿
.�1/jAjC1 Lmv.A/

^

i2A

fi:

(4.59)

(iii) The Fourier transform: We compute
R

f d�0
A for ¿ ¤ A 2 2X , where �0

A.B/ D
.�1/jA\Bj if B ¤ ¿, and 0 otherwise. Using again (4.27) with � a permutation
on X reordering f in nondecreasing order, one can check that

Z

f d�0
A D f�.n/ C 2

jAjX

jD1
.�1/jfij (4.60)

with A D fi1; : : : ; ijAjg and fi1 > � � � > fijAj
. Injecting the above expression in

(4.54) gives the result.
(iv) The (Shapley) interaction transform: instead of computing

R
f db0I

A we proceed
differently. We decompose any given v 2 G.X/ in vC; v�, corresponding
respectively to positive and negative interaction coefficients:

Iv
C

.A/ D
(

Iv.A/; if Iv.A/ > 0

0; otherwise
; Iv

�

.A/ D
(

Iv.A/; if Iv.A/ < 0

0; otherwise
;

for every A 2 2X . By linearity of I, we have v D vC C v�, so that by linearity
of the integral,

R
f dv D R

f dvC C R
f dv�. Using (4.55) and (4.58), we find

Z

f dvC D
X

A�X

mvC

.A/
^

i2A

fi

Z

f dv� D
X

¿¤A22X

.�1/jAjC1 Lmv�

.A/
_

i2A

fi:

Using the expression of m; Lm in terms of I (see Table A.3), we obtain:

Z

f dv D
X

A�X

 
X

K�XnA

BjKjIv
C

.A [ K/

!
^

i2A

fi

C
X

¿¤A22X

.�1/jAjC1
 
X

K�XnA

BjKjIv
�

.A [ K/

!
_

i2A

fi (4.61)
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The case of the symmetric integral can be obtained similarly:

LZ
f dv D

X

A�XC

 
X

K�XnA

BjKjIv
C

.A [ K/

!
^

i2A

fi

C
X

A�X�

 
X

K�XnA

BjKjIv
C

.A [ K/

!
_

i2A

fi

C
X

A\XC¤¿

.�1/jAjC1
 
X

K�XnA

BjKjIv
�

.A [ K/

!
_

i2A

fi

C
X

A\X�¤¿
.�1/jAjC1

 
X

K�XnA

BjKjIv
�

.A [ K/

!
^

i2A

fi; (4.62)

Remark 4.48 Equation (4.55) was first proved by Chateauneuf and Jaffray [49]
(also by Walley [340]), extending a result of Dempster [77]. This formula makes
also clear that the Lovász extension [Eq. (2.96)] is nothing but the Choquet integral.

4.7.2 The Sugeno Integral

The Sugeno integral being nonlinear w.r.t. the capacity, the methodology applied for
the Choquet integral does not fit here. For the same reason, none of the invertible
linear transforms introduced so far can be adequately used. Nevertheless, it is
possible to define a kind of ordinal Möbius transform, which leads to a simple
expression of the Sugeno integral, analogous to (4.55), and which recovers (4.5)
as a particular case.

Theorem 4.49 [166] Let .L;6/ be a totally ordered set, with least element 0,
.P;�/ a (finite) partially ordered set with a least element, and f ; g W P ! L, with g
being isotone. The set of solutions of the equation:

g.x/ D
_

y�x

f .y/; (4.63)

is given by the interval Œ f � D Œ f�; f ��, with, for all x 2 P:

f �.x/ D g.x/

f�.x/ D
(

g.x/; if g.x/ > g.y/;8y 
� x

0; otherwise

(recall that 
� is the covering relation of �, see Sect. 1.3.2). Any f 2 Œ f�; f �� is
called an ordinal Möbius transform of g.
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The name “ordinal Möbius transform” is justified by the fact that (4.63) is the ordinal
counterpart of Eq. (2.17), defining the Möbius transform. Since the upper bound f �
is a trivial solution, when a single value is desired, we always take the lower bound,
called canonical (ordinal) Möbius transform.

Applied to the case of capacities, where the poset .P;�/ is the power set .2X;�/,
we obtain that the ordinal Möbius transform of a capacity 	 is the interval Œm� D
Œm�;m��, with m� D 	, and

m�.A/ D
(
	.A/; if 	.A/ > 	.A n i/;8i 2 A

0; otherwise
.A � X/: (4.64)

We denote by m	
� the (canonical) ordinal Möbius transform of 	. Formula (4.64)

was first proposed as the (ordinal) Möbius transform of a capacity by Marichal [234]
and Mesiar [240] independently. A theory of the Möbius transform on symmetric
ordered structures using operators �;� (Sect. 4.3.2), leading in particular to
Theorem 4.49, was developed by the author [166].

Although many properties of the classical Möbius transform are preserved for the
canonical Möbius transform, some of them are lost, in particular m� is not maxitive

as expected: m	_	0

� ¤ m	� _m	0

� . Also, m� is always nonnegative (see [165, 166] for
details).

Theorem 4.50 For any f 2 R
nC and any capacity 	 on X, the Sugeno integral of f

w.r.t. 	 can be written as:

�
Z

f d	 D
_

A�X

 
^

i2A

fi ^ m.A/

!

(4.65)

where m is any function in Œm�;m��. Equivalently,

�
Z

f d	 D
^

A�X

 
_

i2A

fi _ m.A/

!

(4.66)

where m is any function in Œm�;m��, with m�.A/ D 	.X n A/, and

m�.A/ D
(
	.X n A/; if 	.X n A/ < 	..X n A/[ i/;8i 2 A

1; otherwise
.A � N/:

In particular,

�
Z

f d	 D
_

A�X

 
^

i2A

fi ^ 	.A/
!

D
^

A�X

 
_

i2A

fi _ 	.X n A/

!

: (4.67)
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Proof In order to prove (4.65), it suffices to prove it for m� and m�.

(i) We have, using distributivity of ^;_ and monotonicity of 	:

_

A�X

 
^

i2A

fi ^ 	.A/
!

D
_

A�X
A3�.1/

�
f�.1/ ^ 	.A/� _

_

A�Xn�.1/
A3�.2/

�
f�.2/ ^ 	.A/� _

� � � _ . f�.n/ ^ 	.f�.n/g//
D
�

f�.1/ ^
_

A�X
A3�.1/

	.A/
�

_
�

f�.2/ ^
_

A�Xn�.1/
A3�.2/

	.A/
�

_

� � � _ . f�.n/ ^ 	.f�.n/g//
D . f�.1/ ^ 	.X// _ . f�.2/ ^ 	.X n �.1// _ � � �

_. f�.n/ ^ 	.f�.n/g//

D
n_

iD1

�
f�.i/ ^ 	.f�.i/; : : : ; �.n/g/� :

(ii) For a given nonempty A � X, if there exists some j 2 A such that
	.A/D	.An j/, then 	.A/^

^

i2A

fi � 	.An j/^
^

i2An j

fi, hence the corresponding

term in the supremum over X (in the expression with m�) can be deleted, or
equivalently,	.A/ can be replaced by 0. But m�.A/ D 0 if 	.A/ D 	.A n j/ for
some j, hence the result.

The second equation can be proved in a similar way. ut
We recognize Formula (4.5) (established in the general case) in the first equality
of (4.67). Also, Marichal has shown the above theorem using min-max Boolean
functions [228]. Note the analogy with the expression of the Choquet integral using
the Möbius transform (4.55).

4.8 Characterizations

4.8.1 The Choquet Integral

We begin with the most famous characterization of the Choquet integral, shown by
Schmeidler [286].
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Theorem 4.51 Let I W B.F/ ! R be a functional. Define the set function v.A/ D
I.1A/, A 2 F . The following propositions are equivalent:

(i) I is monotone9 and comonotonically additive;
(ii) v is a capacity, and for all f 2 B.F/, I. f / D R

f dv.

We know already that (ii) implies (i) (Sect. 4.6.1). For the proof of (i))(ii) in the
general case, we refer the readers to Denneberg [80], Marinacci and Montrucchio
[235], or the original paper [286]. We give a simple proof in the finite case.

Proof (i))(ii) Assume jXj D n, F D 2X . We begin by proving that I is positively
homogeneous. Comonotonic additivity implies that I.mf / D mI. f / for any positive
integer m and any f 2 R

X . For two positive integers k;m we have

m

k
I. f / D m

k
I
�

k
f

k

�
D mI

� f

k

�
D I

�m

k
f
�
;

hence positive homogeneity is true for rationals. Lastly, for any positive real number
r, take any increasing sequence of positive rationals ri converging to r, and any
decreasing sequence of positive rationals si converging to r. Then riI. f / D I.ri f / 6
I.rf / 6 I.si f / D siI. f / for every i implies rI. f / 6 I.rf / 6 rI. f /. On the other
hand, remark that by comonotonic additivity, I. f C0/ D I. f /CI.0/ for any function
f , hence I.0/ D 0. In summary, we have proved that

I.r f / D rI. f /; 8r > 0: (4.68)

Monotonicity of I entails monotonicity of v, and because v.¿/ D I.0/ D 0, it
follows that v is a capacity.

On the other hand, I.�1X/ D �v.X/ because by comonotonic additivity we have

0 D I.0/ D I.1X C .�1X// D I.1X/C I.�1X/ D v.X/C I.�1X/:

Hence, we deduce that

I.r1X/ D rv.X/; 8r 2 R: (4.69)

Consider without loss of generality f 2 R
n such that f1 6 f2 6 � � � 6 fn (if not,

apply some permutation on X). We have by (4.1)

f D
nX

iD1
. fi � fi�1/1Ai ;

9In the sense of Theorem 4.24(vi) (also called nondecreasingness).
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with Ai D fxi; xiC1; : : : ; xng, and f0 D 0. Define hi 2 R
X by hi D . fi � fi�1/1Ai ,

i D 1; : : : ; n. Then hi and
Pn

jDiC1 hj are comonotonic functions for i D 1; : : : ; n�1.
Using comonotonic additivity we get

I. f / D I

 

h1 C
nX

jD2
hj

!

D I.h1/C I

 
nX

jD2
hj

!

:

Iterating this we finally get I. f / D Pn
iD1 I.hi/. Observe that . fi�fi�1/ is nonnegative

for i > 2, and that 1A1 D 1X . Then by (4.68) and (4.69), we obtain that

I. f / D
nX

iD1
. fi � fi�1/I.1Ai/:

Since v.A/ D I.1A/, by (4.23), we deduce that I. f / D R
f dv. ut

Remark 4.52

(i) The above result in the finite case limited to nonnegative vectors was shown
by de Campos and Bolaños [68], assuming in addition positive homogeneity,
which can in fact be deduced from monotonicity and comonotonic additivity.

(ii) Because comonotonic additivity is equivalent to horizontal min- or max-
additivity in the finite case (Theorem 4.30), the above characterization also
holds with the latter properties replacing comonotonic additivity.

(iii) A more general version, where functions are allowed to be unbounded, has
been shown by Wakker [338, Theorems 1.13–1.15].

}
We give now a more general result shown by Murofushi et al. [255], where v is not
limited to a capacity. We need for this the following definition.

Definition 4.53 Let I W B.F/ ! R be a functional. The total variation V.I/ of I is
defined by

V.I/ D sup

(
nX

iD1

ˇ
ˇI. f i/� I. f i�1/

ˇ
ˇ

)

; (4.70)

where the supremum is taken over all finite chains 0 D f 0 6 f 1 6 � � � 6 f n D 1X of
functions in B.F/. The functional is said to be of bounded variation if V.I/ < 1.

Theorem 4.54 Let I W B.F/ ! R be a functional. Define the set function v.A/ D
I.1A/, A 2 F . The following propositions are equivalent:

(i) I is comonotonically additive, positively homogeneous and of bounded varia-
tion;

(ii) I is comonotonically additive and uniformly continuous;
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(iii) v 2 BV.F/, i.e., it is a game of bounded variation, and for all f 2 B.F/,
I. f / D R

f dv.

(See proof in [255].)
Another characterization of the Choquet integral can be obtained in the discrete

case using comonotonic modularity.

Theorem 4.55 (Couceiro and Marichal [59, 60]) Let jXj D n and F D 2X, and
let I W RX ! R be a functional. Define the set function v.A/ D I.1A/, A � X. The
following propositions are equivalent:

(i) I is comonotonically modular and satisfies I.˛1S/ D j˛jI.sign .˛/1S/ for all
˛ 2 R and S � X, and I.1XnS/ D I.1X/C I.�1S/;

(ii) v is a game and I. f / D R
f dv.

Proof (ii))(i) is immediate from previous results.
(i))(ii) Let us first consider f W X ! RC and � be a permutation on X such

that 0 6 f�.1/ 6 � � � 6 f�.n/. By comonotonic modularity, we have for any i D
1; : : : ; n � 1,

I. f�.i/1A"

� .i/
/C I.0jA#

� .i/
; fjA"

� .iC1// D I. f�.i/1A"

� .iC1//C I.0jA#

� .i�1/; fjA"

� .i/
/;

that is,

I.0jA#

� .i�1/; fjA"

� .i/
/ D

�
I. f�.i/1A"

� .i/
/ � I. f�.i/1A"

� .iC1//
�

C I.0jA#

� .i/
; fjA"

� .iC1//:
(4.71)

By adding all equations (4.71) for i D 1; : : : ; n � 1, we obtain

I. f / D I.0/C
nX

iD1

�
I. f�.i/1A"

� .i/
/� I. f�.i/1A"

� .iC1//
�
: (4.72)

Proceeding similarly for f W X ! R�, we find

I. f / D I.0/C
nX

iD1

�
I. f�.i/1A#

� .i/
/� I. f�.i/1A#

� .i�1//
�
; (4.73)

with f�.1/ 6 � � � 6 f�.n/ 6 0. It follows that for a real-valued function f , supposing
f� .1/ 6 � � � 6 f�.p/ < 0 6 f�.pC1/ 6 � � � 6 f�.n/, we get from (4.72) and (4.73):

I. f / D I.0/C
pX

iD1

�
I. f�.i/1A#

� .i/
/� I. f�.i/1A#

� .i�1//
�
C

nX

iDpC1

�
I. f�.i/1A"

� .i/
/ � I. f�.i/1A"

� .iC1//
�
: (4.74)
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Observe that I.0/ D 0 by (i), therefore v.¿/ D I.0/ D 0, so v is a game. Using
(4.74) and (i) we get:

I. f / D
pX

iD1

�
I. f�.i/1A#

� .i/
/� I. f�.i/1A#

� .i�1/
/
�C

nX

iDpC1

�
I. f�.i/1A"

� .i/
/ � I. f�.i/1A"

� .iC1/
/
�

D
pX

iD1

f�.i/
�
I.�1

A#

� .i�1/
/ � I.�1

A#

� .i/
/
�C

nX

iDpC1

f�.i/
�
I.1

A"

� .i/
/� I.1

A"

� .iC1/
/
�

D
nX

iD1

f�.i/
�
I.1

A"

� .i/
/� I.1

A"

� .iC1/
/
�

D
nX

iD1

f�.i/
�
v.A"

� .i//� v.A"

� .i C 1//
�
:

We recognize the Choquet integral. ut
In a similar fashion, one can obtain the following characterization of the symmetric
Choquet integral (proof is similar and is therefore omitted; see [60]).

Theorem 4.56 Let jXj D n and F D 2X, and let I W R
X ! R be a functional.

Define the set function v.A/ D I.1A/, A � X. The following propositions are
equivalent:

(i) I is comonotonically modular and satisfies I.˛1S/ D ˛I.1S/ for all ˛ 2 R and
S � X;

(ii) v is a game and I. f / D LR f dv.

Another characterization of the symmetric Choquet integral can be obtained
through horizontal median-additivity.

Theorem 4.57 (Couceiro and Marichal [58]) Let jXj D n and F D 2X, and let
I W R

X ! R be a functional. Define the set function v.A/ D I.1A/, A � X. The
following propositions are equivalent:

(i) I is horizontally median-additive, and satisfies I.˛1S/ D ˛I.1S/ for all ˛ 2 R

and S � X;
(ii) v is a game and I. f / D LR f dv.

Basically the proof is based on Lemma 4.33: horizontal median-additivity implies
horizontal min-additivity for nonnegative functions and horizontal max-additivity
for nonpositive functions, which in turn are equivalent to comonotonic additivity
for nonnegative functions and nonpositive functions, respectively. Then one can
proceed as in the proof of Theorem 4.51.

Other characterizations can be found in [43] and [177, Sect. 5.4.5].
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4.8.2 The Sugeno Integral

We give some characterizations in the discrete case.

Theorem 4.58 Let jXj D n, F D 2X, and let I W .RC/X ! RC be a functional.
Define the set function 	.A/ D I.1A/, A � X. The following propositions are
equivalent:

(i) I is comonotonically maxitive, satisfies I.˛1A/ D ˛^ I.1A/ for every ˛ > 0 and
A � X (hat function property), and I.1X/ D 1;

(ii) 	 is a normalized capacity on X and I. f / D �R f d	.

Proof (ii))(i) Established in Theorem 4.43(iii) and Theorem 4.44.
(i))(ii) Consider without loss of generality f W X ! RC such that f1 6 f2 6

� � � 6 fn (if not, apply some permutation on X). It is easy to check that

f D
n_

iD1
fi1Ai ;

with Ai D fxi; xiC1; : : : ; xng. Define hi 2 R
XC by hi D fi1Ai , i D 1; : : : ; n. Then hi and

_n
jDiC1hj are comonotonic vectors for i D 1; : : : ; n � 1. By comonotonic maxitivity,

we get

I. f / D I

 

h1 _
n_

jD2
hj

!

D I.h1/ _ I

 
n_

jD2
hj

!

:

Iterating this we finally get I. f / D
n_

iD1
I.hi/, and by the hat function property, we

obtain that

I. f / D
n_

iD1

�
fi ^ I.1Ai/

�
:

With 	.A/ D I.1A/, then clearly I. f / D �R f d	. It remains to show that 	 is a
normalized capacity. We have immediately 	.X/ D 1 by (i). Let ˛ 2 �0; 1�. Then by
the hat function property, we have I.˛1X/ D ˛ ^ I.1X/ D ˛ ^ 1 D ˛. Now, using
comonotonic maxitivity we get ˛ D I.˛1X/ D I.˛1X _ 1¿/ D I.˛1X/ _ I.1¿/ D
˛ _ I.1¿/. Hence I.1¿/ 6 ˛ for any ˛ 2 �0; 1�, so that I.1¿/ D 	.¿/ D 0 because
I is nonnegative. Finally, let A � B � X. Then 1A 6 1B and 1A; 1B are comonotonic.
By comonotonic maxitivity, we obtain that I.1B/ D I.1A _ 1B/ D I.1A/ _ I.1B/,
which entails I.1A/ 6 I.1B/. Hence, 	 is monotone. ut
Remark 4.59 This is a generalized and simplified version of the result established
by de Campos and Bolaños [68]. In the latter, functions were supposed to be defined
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on Œ0; 1� instead of RC, and the Sugeno integral was characterized by comonotonic
maxitivity, min-homogeneity, nondecreasingness (in fact not necessary) and the
normalization condition I.1X/ D 1. For functions defined on Œ0; 1�, the hat function
property is needed only for ˛ 2 Œ0; 1�, which is equivalent to I.˛^ 1A/ D ˛^ I.1A/,
a particular case of min-homogeneity. The latter property is therefore unnecessarily
strong for the axiomatization of the Sugeno integral. }

The next characterization is due to Marichal [228]. Still others can be found in
this reference.

Theorem 4.60 Let jXj D n, F D 2X, and let I W Œ0; 1�X ! Œ0; 1� be a functional.
Define the set function 	.A/ D I.1A/, A � X. The following propositions are
equivalent:

(i) I is monotone (nondecreasing), _-homogeneous and ^-homogeneous;
(ii) 	 is a normalized capacity on X and I. f / D �R f d	.

Proof (ii))(i) Established in Theorem 4.43(i), (ii) and (vi).
(i))(ii) ^-homogeneity yields I.0/ D I.0 ^ 1X/ D 0 ^ I.1X/ D 0 and

similarly _-homogeneity implies I.1X/ D 1. Lastly, nondecreasingness of I implies
monotonicity of 	, so that 	 is a capacity.

Consider f 2 Œ0; 1�n. For any B � X, we have by nondecreasingness and ^-
homogeneity

I. f / > I
��^

i2B

fi
�
1B

�
D 	.B/ ^

�^

i2B

fi
�

This implies that

I. f / >
_

B�X

�
	.B/ ^

�^

i2B

fi
��
:

Consider B� � X such that 	.B�/ ^
�V

i2B� fi
�

is maximum, and define

A D
n

j 2 X j fj 6 	.B�/ ^
� ^

i2B�

fi
�o
:

We have A ¤ ¿, for otherwise fj > 	.B�/ ^
�V

i2B� fi
�

for all j 2 X, and since

	.X/ D 1, we would have

	.X/^
�^

i2X

fi
�
> 	.B�/ ^

� ^

i2B�

fi
�
;
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which contradicts the definition of B�. Also, we have 	.X n A/ 6 	.B�/ ^�V
i2B� fi

�
, for otherwise we would have, by definition of A,

	.X n A/ ^
� ^

i2XnA

fi
�
> 	.B�/ ^

� ^

i2B�

fi
�
;

which again contradicts the definition of B�. Then, we have, by nondecreasingness
and _-homogeneity

I. f / 6 I
��
	.B�/ ^

� ^

i2B�

fi
��
1A C 1XnA

�

D
�
	.B�/ ^

� ^

i2B�

fi
��

_ 	.X n A/

D 	.B�/ ^
� ^

i2B�

fi
�

D
_

B�X

�
	.B/ ^

�^

i2B

fi
��
:

We recognize by (4.67) the Sugeno integral. ut

4.9 Particular Cases

We give in this section the expression of the Choquet and Sugeno integrals for
particular cases of capacities.

4.9.1 The Choquet Integral

0-1-Capacities

Theorem 4.61 (Murofushi and Sugeno [253]) Let 	 be a 0-1-capacity on .X;F/.
For every f 2 B.F/

Z

f d	 D sup
A W	.A/D1

inf
x2A

f .x/:

Proof By translation invariance [Theorem 4.24(iii)], it suffices to prove it for
nonnegative functions. Let a D supA W	.A/D1 infx2A f .x/. By definition of the
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Choquet integral, it suffices to prove that

	. f > t/ D
(
1; if t < a

0; if t > a:

Assume t < a. Then there exists A 2 F such that 	.A/ D 1 and t < infx2A f .x/.
This inequality implies A � f f > tg, and hence that 	. f > t/ D 1. Assume on the
contrary that t > a. If 	. f > t/ D 1, it follows that t > a > inffx W f .x/>tg f .x/ > t, a
contradiction. It follows that 	. f > t/ D 0. ut
Relation with Some Mean Operators and Statistical Estimators We suppose in
this paragraph that X D f1; : : : ; ng and F D 2X. Viewing the integrand as a vector
in R

n on which can act some mean operator, the Choquet integral permits to recover
two important mean operators, namely the weighted arithmetic mean and its ordered
version, known in statistics as the L-estimator. We first introduce their definition.

Definition 4.62 Let w 2 Œ0; 1�n be a weight vector; i.e., satisfying
Pn

iD1 wi D 1.
The weighted arithmetic mean and the ordered weighted arithmetic mean with
weight vector w are mappings WAMw W Rn ! R, OWAw W Rn ! R respectively,
defined for any f 2 R

n by

WAMw. f / D
nX

iD1
wi fi (4.75)

OWAw. f / D
nX

iD1
wi f�.i/ (4.76)

where � is any permutation on X such that f�.1/ 6 � � � 6 f�.n/.

Observe that WAMw and OWAw coincide if and only if w D . 1n ; : : : ;
1
n /. Interesting

particular cases are obtained when wk D 1 for some k in f1; : : : ; ng. Then wi D 0

for all i ¤ k, and WAMw reduces to the projection on the kth coordinate, denoted
by Pk, while OWAw reduces to the kth order statistic (or quantile), denoted by OSk.
Note that OS1 and OSn correspond respectively to the minimum and maximum
operators, and if n D 2k C 1, OSkC1 is the median. Other common means used
in statistics can be recovered: the trimmed mean, where w1 D � � � D wk D 0 D
wn�kC1 D � � � D wn for some 1 6 k < n

2
, and the other weights being equal, the

Winsorized mean, where again w1 D � � � D wk D 0 D wn�kC1 D � � � D wn for some
1 6 k < n

2
, but wkC1 D wn�k D kC1

n , the rest of the weights10 being equal to 1
n ,

etc.

10This amounts to deleting the k lowest and highest values in f , and replacing them respectively by
the remaining lowest and highest values; i.e., f�.kC1/; f�.n�k/.
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Theorem 4.63 Let w be a weight vector. Then WAMw D R � d	 and OWAw DR � d	0, where 	 is an additive capacity determined by

	.fig/ D wi .i 2 X/; (4.77)

and 	0 is a symmetric capacity determined by

	0.A/ D
jAj�1X

jD0
wn�j .A � X/: (4.78)

Conversely, any Choquet integral w.r.t. a normalized additive capacity is a weighted
arithmetic mean, whose weight vector is given by (4.77), and any Choquet integral
w.r.t. a symmetric capacity	 is an ordered weighted arithmetic mean, whose weight
vector is given by

wi D 	.f1; : : : ; n � i C 1g/� 	.f1; : : : ; n � ig/ .i D 2; : : : ; n/

and w1 D 1 �Pn
iD2 wi.

(We recall that 	 is symmetric if jAj D jBj entails 	.A/ D 	.B/; see
Sect. 2.14.)

Proof See Sect. 4.5.3 for the result concerning WAM. The result for OWA can be
checked similarly. ut

From the above result we immediately get the following particular cases:

Corollary 4.64

(i) For any f 2 R
n,
R

f d	 D V
i2X fi if and only if 	 D 	min;

(ii) For any f 2 R
n,
R

f d	 D W
i2X fi if and only if 	 D 	max;

(iii)
R � d	 D Pk if and only if 	 is the Dirac measure ık;

(iv)
R � d	 D OSk if and only if 	 is a symmetric capacity determined by
	.f1; : : : ; ig/ D 1 if i > n � k C 1, and 0 otherwise.

(See Sect. 2.8.1 for the definition of 	min and 	max, and Example 2.4 for the
definition of the Dirac measure.) Note that the two first results were already
established in Theorem 4.24(xi).

Remark 4.65

(i) The ordered weighted arithmetic mean was introduced by Yager [352], under
the name of ordered weighted averaging operator. In statistics however, linear
combinations of order statistics are well known and used from a long time under
the name of L-estimator, see for instance Weisberg [347].

(ii) Most of these properties were shown by Murofushi and Sugeno [253] (see
also Fodor et al. [143] for the result on ordered weighted arithmetic means).
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The readers can consult [253] for further results linked to some quantities in
statistics.

}
2-Additive Games We consider in this paragraph that jXj D n and F D 2X . Sup-
pose that v is a 2-additive game. We know from its definition (see Definition 2.50)
that v needs much less coefficients than an ordinary capacity to be defined, hence
one can expect a simplification of the formula of the Choquet integral. Indeed, in
(4.55), the summation is over singletons and pairs instead of all subsets of X. More
interestingly, one can use Formula (4.61) expressing the Choquet integral in terms
of the interaction transform. A rearrangement of terms leads to the following two
formulas when v is 2-additive:

Z

f dv D
X

i; j W Iij>0

. fi ^ fj/Iij C
X

i; j W Iij<0

. fi _ fj/jIijj C
X

i2X

fi
�
Sh

i � 1

2

X

j¤i

jIijj
�

(4.79)

D
X

i2X

Sh
i fi � 1

2

X

fi;jg�X

Iijj fi � fjj; (4.80)

with f 2 R
X , where we have used the shorthands Iij D Iv.fi; jg/ and Sh

i D Iv.fig/
[Shapley value, see (2.32)]. Note that (4.79) can be obtained directly from (2.61)
and the fact that (using notation of the latter formula) Iij D m	

ij and Sh
i D m	

i C
1
2

P
j¤i m	

ij [see (2.41)].
One can obtain in a similar fashion the expression of the symmetric Choquet

integral (see [177, Sect. 5.4.3] for a proof):

LZ
f dv D

X

i; j2XC W Iij>0

. fi ^ fj/Iij C
X

i; j2X� W Iij>0

. fi _ fj/Iij (4.81)

C
X

i; j2XC W Iij<0

. fi _ fj/jIijj C
X

i; j2X� W Iij<0

. fi ^ fj/jIijj

C
X

i2XC

fi

 
X

j2X� W Iij<0

jIijj
!

C
X

i2X�

fi

 
X

j2XC W Iij<0

jIijj
!

C
X

i2X

fi

 

Sh
i � 1

2

X

j6Di

jIijj
!

:

with XC D fi 2 X W fi > 0g, and X� D X n XC.
We postpone the interpretation of these formulas to Chap. 6 (Sect. 6.10.4). So far

no nice formula was obtained for k-additive games with k > 2.
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�-Measures There is no special form of the Choquet integral w.r.t �-measures (see
Sect. 2.8.6). However, some properties are noteworthy, if we consider �-measures
as distorted probabilities. An obvious fact is that with � D 0, the Choquet integral
computes the usual expectation. A more interesting result is that with the extreme
values of �, one recovers the essential supremum and infimum. We recall that the
distortion function is [see (2.13)]

s�1
� .u/ D 1

�

�
.1C �/u � 1� .u 2 Œ0; 1�; � 2 ��1;1Œ/:

Theorem 4.66 Let P be a probability measure on .X;F/, � 2 ��1;1Œ, and
consider the �-measure (distorted probability) 	� D s�1

� ı P. The following holds,
for every f 2 B.F/:

(i) � 6 �0 implies
R

f d	� >
R

f d	�0 ;
(ii)

R
f d	0 D R

f dP;
(iii) lim�!�1

R
f d	� D ess supP f ;

(iv) lim�!1
R

f d	� D ess infP f .

Proof

(i) By Theorem 4.24(vii), it suffices to show that 	� > 	�0 , which amounts to

showing that
@s�1
�

@�
.u/ 6 0 for u 2 Œ0; 1�. We have for any u 2 Œ0; 1�:

@s�1
�

@�
.u/ D u.1C �/u�1� � .1C �/u C 1

�2
D .1C �/u�1.�.u � 1/� 1/C 1

�2
:

We have to prove that the numerator is nonpositive; i.e., that the following
inequality holds, letting v D 1 � u:

1C �v > .1C �/v .v 2 Œ0; 1�; � > �1/: (4.82)

Suppose first that j�j < 1. Then the binomial expansion can be applied:

.1C �/v D 1C v�C v.v � 1/

2Š
�2 C � � � C v.v � 1/ � � � .v � k C 1/

kŠ
�k C � � �

Since v 2 Œ0; 1� and j�j < 1, we have

ˇ
ˇ
ˇ
ˇ
v.v � 1/

2
�2
ˇ
ˇ
ˇ
ˇ >

ˇ
ˇ
ˇ
ˇ
v.v � 1/.v � 2/

2 � 3 �3
ˇ
ˇ
ˇ
ˇ

and similarly for all pairs of subsequent terms. Because the terms in �2; �4; : : :
are negative, it follows that .1C�/v 6 1Cv�, and (4.82) is proved for j�j < 1.
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Suppose now � > 1 and put �0 D � �
�C1 . Then �0 2 ��1;� 1

2

�
and because

� D � �0

�0C1 , we have to prove that

1 � �0

1C �0 v >
�
1 � �0

1C �0
�v

which yields

1C �0.1 � v/ > .1C �0/1�v:

This is identical to (4.82) since 1 � v 2 Œ0; 1�, and because j�0j < 1, we have
already established that the inequality holds.

(ii) Obvious
(iii) By properties of the decumulative function, it suffices to show that

lim�!�1 G	�;f .t/ D 1 if t < ess supP f . We have

lim
�!�1

1

�
..1C �/P. f>t/ � 1/ D 1

�1.�1/ D 1

if P. f > t/ ¤ 0.
(iv) Similarly,

lim
�!1

1

�
..1C �/P. f>t/ � 1/ D lim

�!1�P. f>t/�1 D 0

if P. f > t/ ¤ 1.
ut

4.9.2 The Sugeno Integral

The case of 0-1-capacities was treated in Sect. 4.9.1, because the Choquet and
Sugeno integrals coincide in this case. We consider for the rest of this section that
X D f1; : : : ; ng and F D 2X .

As for the Choquet integral, the Sugeno integral is related to some special kinds
of mean operators, build with minimum and maximum. They are the counterparts
of the weighted arithmetic mean and the ordered weighted arithmetic mean. To this
end, we consider a different kind a weight vector, which we call ordinal weight
vector: it is any vector w 2 Œ0; 1�n such that

Wn
iD1 wi D 1.
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Definition 4.67 Let w 2 Œ0; 1�n be an ordinal weight vector. For any f 2 Œ0; 1�n,

(i) The weighted maximum with respect to w is a mapping WMaxw W Œ0; 1�n !
Œ0; 1� defined by

WMaxw. f / D
n_

iD1
.wi ^ fi/I

(ii) The weighted minimum with respect to w is a mapping WMinw W Œ0; 1�n !
Œ0; 1� defined by

WMinw. f / D
n̂

iD1
..1 � wi/ _ fi/I

(iii) The ordered weighted maximum with respect to w is a mapping OWMaxw W
Œ0; 1�n ! Œ0; 1� defined by

OWMaxw. f / D
n_

iD1
.wi ^ f�.i//;

with � a permutation on X such that f�.1/ 6 � � � 6 f�.n/, and w1 > w2 > � � � >
wn;

(iv) The ordered weighted minimum with respect to w is a mapping OWMinw W
Œ0; 1�n ! Œ0; 1� defined by

OWMinw. f / D
n̂

iD1
..1 � wi/ _ f�.i//;

with � as above and w1 6 w2 6 � � � 6 wn.

Remark 4.68

(i) The usual minimum and maximum are recovered from their weighted versions
and weighted ordered versions when wi D 1, i D 1; : : : ; n. The weighted
minimum and weighted maximum were proposed by Dubois and Prade [105],
and their ordered versions were introduced in [117] by Dubois et al.

(ii) In the case of the ordered weighted maximum, since

n_

iD1
.wi ^ f�.i// D

n_

iD1

�� n_

kDi

wk

�
^ f�.i/

�

the assumption w1 > w2 > � � � > wn is not necessary, however it is useful in the
next theorem. The same remark applies to the ordered weighted minimum.

}
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Theorem 4.69 Let w be an ordinal weight vector. Then the following holds:

(i) WMaxw D �R � d	, where 	 is a normalized maxitive capacity determined by
	.fig/ D wi, i 2 X;

(ii) WMinw D �R � d	, where 	 is a normalized minitive capacity determined by
	.X n fig/ D 1 � wi, i 2 X;

(iii) OWMaxw D �R � d	, where 	 is a normalized symmetric capacity determined
by 	.A/ D wn�jAjC1, ¿ ¤ A � X;

(iv) OWMinw D �R � d	, where 	 is a normalized symmetric capacity determined
by 	.A/ D wn�jAj, A � X.

Conversely, any Sugeno integral w.r.t. a normalized maxitive (respectively, minitive,
symmetric) capacity is a WMaxw (respectively, WMinw, OWMaxw or OWMinw)
operator, with w determined as above.

Proof (i) For simplicity we write .i/ instead of �.i/. Suppose 	 is normalized
maxitive, and define wi D 	.fig/ for each i 2 X. This defines an ordinal weight
vector w. Consider the last k in the sequence 1; : : : ; n such that �R f d	 D f.k/ ^
	.f.k/; : : : ; .n/g/, and note that 	.f.k/; : : : ; .n/g/ D w.k/ _ � � � _ w.n/.

First, if k D n there is nothing to prove. We claim that if k < n, then w.k/ > w.i/
for k < i 6 n. Indeed, if there exists k0 such that k < k0 6 n and w.k0/ > w.i/,
i D k; : : : ; n we would have

�
Z

f d	 D f.k0/ ^ .w.k0/ _ � � � _ w.n//

because f.k0/ > f.k/, and this contradicts the definition of k. It follows that �R f d	 D
f.k/ ^ w.k/.

Assume that �R f d	 D f.k/ 6 	.f.k/; : : : ; .n/g/ D w.k/ _ � � � _ w.n/. We have
f.k/ ^ w.k/ D f.k/ > f.i/ ^ w.i/ for 1 6 i 6 k. Also, f.k/ ^ w.k/ > f.i/ ^ w.i/, k < i 6 n.
Indeed, assume that there exists k < k0 6 n such that f.k/ ^ w.k/ 6 f.k0/ ^ w.k0/. Then

�
Z

f d	 D f.k/ ^ w.k/ 6 f.k0/ ^ w.k0/ 6 f.k0/ ^ �w.k0/ _ � � � _ w.n/
�

„ ƒ‚ …
	.f.k0/;:::;.n/g/

;

which contradicts the definition of the Sugeno integral or the definition of k. In
summary,

�
Z

f d	 D
n_

iD1

�
f.i/ ^ w.i/

� D
n_

iD1

�
fi ^ wi

� D WMaxw. f /: (4.83)

Assume on the contrary that �R f d	 D 	.f.k/; : : : ; .n/g/ D w.k/_� � �_w.n/ 6 f.k/.
We have f.k/^w.k/ D w.k/ > f.i/^w.i/ for k < i 6 n because f.i/ > f.k/ > w.k/ > w.i/.
Also, f.k/ ^ w.k/ > f.i/ ^ w.i/ for 1 6 i < k. Indeed, suppose there exists 1 6 k0 < k
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such that f.k/ ^ w.k/ < f.k0/ ^ w.k0/. Then

�
Z

f d	 D f.k/ ^ w.k/ < f.k0/ ^ w.k0/ 6 f.k0/ ^ �w.k0/ _ � � � _ w.n/
�

„ ƒ‚ …
	.f.k0/;:::;.n/g/

;

which contradicts the definition of the Sugeno integral. Hence, again (4.83) holds.
Assertion (ii) holds by (i) and scale inversion [Theorem 4.43(iv)].
(iii) Take any ordinal weight vector w such that

W
i wi D 1 and w1 > � � � > wn,

and define a symmetric capacity by 	.A/ D wn�jAjC1, for all A � X, A ¤ ¿. Then,
by (4.28), we get

�
Z

f d	 D
n_

iD1

�
f.i/ ^ 	.f.i/; : : : ; .n/g/

�

D
n_

iD1

�
f.i/ ^ wi

�
D OWMaxw. f /:

As above, assertion (iv) holds by (iii) and scale inversion. ut
Note that the above result shows that the classes of OWMaxw and OWMinw

operators coincide.

Remark 4.70 Normalized maxitive (respectively, minitive) capacities are called
possibility (respectively, necessity) measures (Sect. 2.8.3). Moreover, as it is shown
in Sect. 7.7, they are generated by a possibility distribution � [Eqs. (7.40) and
(7.43)]. Here the ordinal weight vector w can be seen as a possibility distribution,
and denoting by … and Nec the possibility and necessity measures generated by w,
we can rewrite the weighted minimum and maximum as

WMaxw. f / D �
Z

f d…I WMinw. f / D �
Z

f dNec:

}

4.10 The Choquet Integral on the Nonnegative Real Line

4.10.1 Computation of the Choquet Integral

The properties of the Choquet integral presented so far do not permit, up to some
very special cases, to perform computation of the integral similarly as one would
do for classical integral calculus; i.e., using primitives, partial integration, change
of variable, and so on. This is however possible if one works on the real line and
considers in particular capacities that are distorted Lebesgue measures. The results
presented in this section are due to Sugeno [321] (see also [322] for more results).
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We consider the Lebesgue measure � on RC, with �.Œa; b�/ D b � a for any
interval Œa; b� � RC, and a distortion function; i.e., a function h W RC ! RC being
continuous, increasing and satisfying h.0/ D 0. The distorted Lebesgue measure is
the mapping 	h D h ı �, and is evidently a continuous capacity on RC.

In the rest of this section, we deal with integrands f W RC ! RC that are
nondecreasing, and with the Choquet integral on a subdomain Œ0; t� for some t > 0

[Eq. (4.8)].

Theorem 4.71 Let f W RC ! RC be nondecreasing and continuously differen-
tiable, and let 	 be a continuous capacity on RC, such that	.Œ�; t�/ is differentiable
w.r.t. � on Œ0; t� for every t > 0, and 	.ftg/ D 0 for every t > 0. Then

Z

Œ0;t�
f d	 D �

Z t

0

@	

@�
.Œ�; t�/f .�/ d� .t > 0/;

where the right-hand side integral is the Riemann integral. In particular, for a
distorted Lebesgue measure 	h with h being continuously differentiable, we obtain

Z

Œ0;t�
f d	h D

Z t

0

@h

@�
.t � �/f .�/ d�: (4.84)

We give a proof when f is either constant or increasing. The general case is
cumbersome and follows the same principles [321].

Proof The second equation derives immediately from the first one, on which we
focus. We set for simplicity 	0 D @	

@�
.

Let us consider a constant function f .�/ D C 8� > 0. Then

Z 1

0

	.f� W C > rg \ Œ0; t�/ dr D
Z C

0

	.Œ0; t�/ dr D C	.Œ0; t�/

D �
Z t

0

C	0.Œ�; t�/ d�;

as desired.
Let us now consider an increasing function f . We have

Z

Œ0;t�
f d	 D

Z 1

0

	.f f > rg \ Œ0; t�/ dr

D
Z f .0/

0

	.Œ0; t�/ dr C
Z f .t/

f .0/
	.Œ f �1.r/; t�/ dr

D 	.Œ0; t�/f .0/C
Z f .t/

f .0/
	.Œ f �1.r/; t�/ dr: (4.85)
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Let r D f .�/, then we have f 0.�/ d� D dr. By partial integration, we obtain

Z f .t/

f .0/
	.Œ f �1.r/; t�/ dr D

Z t

0

	.Œ�; t�/f 0.�/ d�

D
h
	.Œ�; t�/f .�/

it

0
�
Z t

0

	0.Œ�; t�/f .�/ d�

D 	.ftg/f .t/ � 	.Œ0; t�/f .0/ �
Z t

0

	0.Œ�; t�/f .�/ d�:

Since by assumption 	.ftg/ D 0, we obtain, substituting into (4.85),

Z

Œ0;t�
f .�/ d	 D �

Z t

0

	0.Œ�; t�/f .�/ d�;

as desired. ut
Example 4.72 Taking h.t/ D t2 and f .t/ D et, we find

Z

Œ0;t�
et d	t2 D

Z t

0

2.t � �/e� d�

D 2t.et � 1/� 2
h
�e�

it

0
C 2.et � 1/ D 2.et � t � 1/:

Þ
One recognizes in (4.84) a convolution product [see (1.27)], hence one can use

the Laplace transform to express the result in a very simple way (see Sect. 1.3.11 for
the Laplace transform and related notions). Consider the relation

g.t/ D
Z

Œ0;t�
f d	h (4.86)

under the assumptions of Theorem 4.71 for f and h. Denoting by F.s/, G.s/ and
H.s/ the Laplace transforms of f ; g; h respectively, we obtain from (4.84), (1.26),
and (1.28)

G.s/ D sH.s/F.s/ .s 2 C/: (4.87)

Equation (4.87) can be used in several ways. Suppose one wants to compute the
Choquet integral of f w.r.t. 	h on Œ0; t�. Then the answer is the function g.t/ given by

g.t/ D L�1.sH.s/F.s//;

where L�1.�/ is the inverse Laplace transform.
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Example 4.73 Let h.t/ D eat � 1 with a > 0, and f .t/ D t. Then (see Sect. 1.3.11,
Table 1.1) H.s/ D 1=.s � a/� 1=s and F.s/ D 1=s2, which yields

G.s/ D 1

s

�
1

s � a
� 1

s

	

D 1

a

�
1

s � a
� 1

s

	

� 1

s2
;

from which we obtain g.t/ D 1
a .e

at � 1/� t. Þ
Conversely, suppose that a continuous and increasing function g W RC ! RC with
g.0/ D 0 is given. Then, the distorted Lebesgue measure being fixed, it is possible
to find a continuous and increasing function f such that the relation (4.86) holds:

f .t/ D L�1
�

G.s/

sH.s/

	

: (4.88)

Remark 4.74

(i) The latter problem, whose solution is given by (4.88), is similar to the Radon-
Nikodym11 theorem, well-known in measure theory. To introduce it, we need
some additional definitions. A measure 	 on .X;F/ is �-finite if X can be
written as X D S

i2I Ai, with Ai 2 F , 	.Ai/ < 1, and I is countable. For two
measures 	; � on .X;F/, � is absolutely continuous w.r.t. 	, which is denoted
by � � 	, if 	.A/ D 0 implies �.A/ D 0, A 2 F . Now, the Radon-Nikodym
theorem says that, given �; 	 two measures on .X;F/ being �-finite and such
that � � 	, there exists a unique (up to a null set w.r.t. 	) measurable function
f such that

�.A/ D
Z

A
f d	:

By analogy, f is said to be the Radon-Nikodym derivative, denoted by d�
d	 . Up

to the knowledge of the author, there are few studies of a generalization of the
Radon-Nikodym theorem for capacities and the Choquet integral, we mention
Graf [184].

(ii) More applications of Theorem 4.71 can be found in [321], in particular on
Abel’s integral equations, and on fractional derivatives in the companion paper
[322]. }

11Johann Radon (Děčín (Bohemia, Austria-Hungary), 1887 – Vienna, 1956), Austrian mathemati-
cian, well-known for his contribution to measure theory. He proved the above-mentioned theorem
in 1913 for the special case where X D R

n.
Otto Nikodym (Zabolotiv (Ukraine), 1887 – Utica NY, 1974), Polish mathematician. He general-
ized Radon’s result in 1930.
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4.10.2 Equimeasurable Rearrangement

We have seen in the previous section that the computation of the Choquet integral,
given by Theorem 4.71, is restricted to monotone functions. There is a simple
way to overcome this limitation by considering the equimeasurable (increasing or
decreasing) rearrangement of a function.

Given a function f W RC ! RC and a Lebesgue measure �, an equimeasurable
(nondecreasing) rearrangement of f w.r.t. � is a functionef W RC ! RC which is
nondecreasing and satisfies

�. f > t/ D �.ef > t/ .t 2 R
C/: (4.89)

If such a function exists, then clearly

Z

f d	h D
Z

ef d	h

for every distorted Lebesgue measure 	h D h ı �, and we can extend the results
from Sect. 4.10.1 to any continuously differentiable function.

Theorem 4.75 Let f W Œ0; t� ! RC be a continuous function, with
maxx2Œ0;t� f .x/ D M, and � be the Lebesgue measure on RC. Thenef W Œ0; t� ! Œ0;M�
given by

ef .�/ D G�1
�;f .t � �/ (4.90)

is a nondecreasing equimeasurable rearrangement.

Proof G�;f is decreasing, hence invertible, because f is continuous and � is the
Lebesgue measure. Let G�;f .x/ D ˛, then we have x Def .t � ˛/. It follows that (see
Fig. 4.10)

G�;ef .x/ D �.ef > x/ D t � .t � ˛/ D ˛ D G�;f .x/:

ut
Remark 4.76 The notion of equimeasurable rearrangement is known in probability
theory from a long time ago, starting with the work of Hardy, Littlewood and Pólya
[192], and is very useful in many areas of economic theory, in particular, insurance.
The result presented here can be found in Narukawa et al. [257] and Sugeno [322,
Proposition 26]. It was extended to capacities in a much more general framework
by Ghossoub [151].
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Mx

α

t

Gλ,f

M

x

α t − α t

G−1
λ,f f

Fig. 4.10 Nondecreasing rearrangement: illustration for the proof

4.11 Other Integrals

4.11.1 The Shilkret Integral

The Shilkret integral [304] has a definition close to the Sugeno integral: the
minimum is simply replaced by a multiplication.

Definition 4.77 Let f 2 BC.F/ be a function and 	 be a capacity on .X;F/. The
Shilkret integral of f w.r.t. 	 is defined by

Z Sh

f d	 D
_

t>0
.t � G	; f .t//: (4.91)

As for the Choquet and Sugeno integrals, the Shilkret integral has an easy
graphical interpretation: it is the area of a largest rectangle that can fit below the
decumulative function (Fig. 4.11). For some properties, see Theorem 4.88, because
the Shilkret integral is a particular case of the decomposition integral.

t

Gμ,f (t)

ess supμf

μ(X)

ť

Gμ,f (ť)

Fig. 4.11 The Shilkret integral is given by the area of the white rectangle
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4.11.2 The Concave Integral

In the whole section, we consider jXj D n and F D 2X.

Definition 4.78 Let f W X ! RC and 	 be a capacity. The concave integral of f
w.r.t. 	 is given by:

Z cav

f d	 D sup

(
X

S�X

˛S	.S/ W
X

S�X

˛S1S D f ; ˛S > 0;8S � X

)

: (4.92)

We note that the supremum in the above equation can be replaced by a maximum:
the concave integral is merely the optimal solution of a linear program in ˛S; S � X.

In words, the concave integral is the value achieved by the best decomposition of
the integrand into hat functions.

Example 4.79 Let X D f1; 2; 3g and	 be a capacity defined by	.X/ D 1; 	.12/ D
	.23/ D 2

3
, 	.13/ D 1

3
and 	.S/ D 0 otherwise. Considering the function f D

.1; 2; 1/, possible decompositions in hat functions are for instance

f D 11 C 2 � 12 C 13; f D 112 C 123; f D 1123 C 12:

The second one is optimal, yielding
R cav f d	 D 2

3
C 2

3
D 4

3
. Þ

Example 4.80 (Example 4.21 continued) (Even and Lehrer [126]) We consider a set
of three workers X D f1; 2; 3g and a capacity 	 on X representing the productivity
per unit of time of a given group of workers (team). We take the following values:
	.1/ D 	.2/ D 	.3/ D 0:2, 	.12/ D 0:9, 	.13/ D 0:8, 	.23/ D 0:5 and
	.123/ D 1. Each worker is willing to invest a given amount of time in total, say
f1 D 1 for worker 1, f2 D 0:4 and f3 D 0:6 for workers 2 and 3. The question is:
How should the workers organize themselves in teams so as to maximize the total
production while not exceeding their allotted time? Clearly, the answer is given by
the concave integral of f w.r.t. 	. In this case, this is achieved as follows: team f1; 2g
is working 0.4 unit of time and team f1; 3g is working 0.6 unit of time, which yields
a total production 0:9 � 0:4C 0:8 � 0:6 D 0:84.

Note that the Choquet integral computes the total productivity under the con-
straint that the teams form a specific chain (Example 4.21). Specifically in this case,
the teams are f1; 2; 3g, f1; 3g and f1g for durations 0:4, 0:2 and 0:4 respectively,
yielding a total production equal to 0:4C 0:8 � 0:2C 0:2 � 0:4D 0:64. Therefore, the
concave integral yields higher outputs than the Choquet integral in general. Þ

The main properties of the concave integral are gathered below.

Theorem 4.81 The following properties hold:

(i) For every capacity	, the concave integral
R cav � d	 is a concave and positively

homogeneous functional, and satisfies
R cav

1S d	 > 	.S/ for all S 2 2X;
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(ii) For every f 2 R
XC and capacity 	,

Z cav

f d	 D min
˚
I. f / W I W RXC ! R concave, positively homogeneous,

and such that I.1S/ > 	.S/;8S � X
�I

(iii) For every f 2 R
XC and capacity 	,

Z cav

f d	 D min
P additive, P>	

Z

f dPI

(iv) For every f 2 R
XC and balanced capacity 	,

Z cav

f d	 D min
2core.	/

Z

f d

holds if and only if 	 has a large core (see Definition 3.43) (core elements 
are identified with additive capacities);

(v) For every f 2 R
XC and every c 2 RC,

Z cav

. f C c1X/ d	 D
Z cav

f d	C
Z cav

c1X d	 D
Z cav

f d	C c	.X/

holds if and only if 	 has a large core;
(vi) For every f 2 R

XC and capacity 	,

Z

f d	 6
Z cav

f d	;

and equality holds for every f 2 R
XC if and only if 	 is supermodular.

Proof

(i) Positive homogeneity is clear. Concavity comes from the fact that for any f ; g 2
R

XC; � 2 Œ0; 1�, the decomposition of �f C .1 � �/g into
P

S22X .�˛S C .1 �
�/ˇS/1S, with ˛S; ˇS the coefficients of the optimal decompositions of f and g
respectively, is not necessarily optimal. Now, because ˛S D 1 is a particular
decomposition of 1S, the last property follows easily.

(ii) For any I W RXC ! R being positively homogeneous, concave and s.t. I.1S/ >
	.S/;8S 2 2X , for any non-identically zero f 2 R

XC and for any decomposition
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P
S22X ˛S1S D f , ˛S > 0, we have, letting N̨ D P

S ˛S,

I. f / D N̨ I

0

@
X

S22X

˛S

N̨ 1S

1

A

> N̨
X

S22X

˛S

N̨ I.1S/

>
X

S22X

˛S	.S/:

It follows that

I. f / > max

(
X

S�X

˛S	.S/ W
X

S�N

˛S1S D f ; ˛S > 0;8S � X

)

D
Z cav

f d	:

By (i), the concave integral satisfies all the requirements of I, therefore it is the
minimum over all such functionals.

(iii) Consider the linear programming problem in the variables Pi, i 2 X (letting
Pi D P.fig):

min z D P
i2X fiPi

s.t.
P

i2S Pi > 	.S/; ¿ ¤ S � X:

It has obviously a feasible solution and because the Pi’s are nonnegative
(by monotonicity of 	), it is bounded. It follows by the duality theorem
(Theorem 1.8) that this problem as well as the dual linear program in the
variables ˛S, ¿ ¤ S � X,

max w D P
S22Xnf¿g ˛S	.S/

s.t.
P

S3i ˛S D fi; i 2 X
˛S > 0; ¿ ¤ S � X

have an optimal solution, and equality of the objective functions z� D w� holds
at the optimum.

(iv) For any balanced capacity 	, we have by (iii)

min
2core.	/

Z

f d > min
P additive;P>	

Z

f dP D
Z cav

f d	:

Equality for any f holds if and only if	 has a large core. Indeed, if P 62 core.	/
achieves the minimum in the second term, there exists  2 core.	/ such that
 6 P, so that  also achieves the minimum.
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(v) By (iv), largeness of the core implies that there exists an additive measure P in
core.	/ such that

Z cav

. f C c1X/ d	 D
Z

. f C c1X/ dP D
Z

f dP C
Z

c1X dP

D
Z

f dP C cP.X/ D
Z cav

f d	C c	.X/:

The 4th equality comes from the fact that if P achieves the minimum for
R
. f C

c1X/ dP, it also minimizes
R

f dP.
Conversely, if 	 has not a large core, by Lemma 3.44(iii), there exists a

minimal element in fP� > 	g such that P�.X/ > 	.X/. Since P� is minimal,
it must satisfy P�.S/ D 	.S/ for some S � X. Take f D 1S. Then

R cav f d	 D
minP>	

R
f dP D P�.S/. Because P� also minimizes

R
. f C c1X/ dP, we get

for any c > 0:

Z cav

. f Cc1X/ d	 D
Z

. f Cc1X/ dP� D P�.S/CcP�.X/ > P�.S/Cc	.X/

D
Z cav

f d	C c	.X/:

(vi) Formula (4.26) shows clearly that the Choquet integral is based on a particular
decomposition of the integrand, hence the inequality holds by definition of
the concave integral. Now, because supermodularity of 	 implies largeness of
the core (see Theorem 3.52 and Lemma 3.51), it follows from (iv), (iii) and
Theorem 4.39 that

Z

f d	 D min
2core.	/

Z

f d D min
P additive;P>	

Z

f dP D
Z cav

f d	:

Conversely, suppose that all equalities hold. The first one implies by Theo-
rem 4.39 that 	 is supermodular.

ut
Remark 4.82

(i) The concave integral was introduced by Lehrer [222] (see also Azrieli and
Lehrer [12], Lehrer and Teper [223]), as an alternative to the Choquet
integral for application in decision under uncertainty, where the concavity
of the integral can be interpreted as uncertainty aversion (see Chap. 5). Also,
Example 4.80 gives a clear motivation to the concave integral in production
problems.

(ii) An essential difference with the Choquet and Sugeno integrals (as well as with
their generalizations, see below Sect. 4.11.4) is that the concave integral is no
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longer an extension of the capacity: the equality in
R cav

1S d	 D 	.S/ does not
hold in general and is replaced by > [see Theorem 4.81(i)], which can be strict:
take, e.g., X D f1; 2g and 	.1/ D 	.2/ D 	.12/ D 1. Then

R cav
1f12g d	 D

2 > 	.12/.
(iii) By its definition, the concave integral can be seen as a generalization and

extension of the totally balanced cover of a game (Sect. 3.4): the maximization
is done over every decomposition of the function and is not restricted to bal-
anced collections, and the domain of the game is extended to any nonnegative
function.

(iv) As a consequence of (iii) and Theorem 1.12, the superdifferential at 0 of the
concave integral is the set fP additive W P > 	g.

(v) The concave integral does not satisfy monotonicity w.r.t. stochastic dominance
(Definition 4.23), as shown in the following example due to Lehrer [222]. Take
X D fx1; x2; x3g, 	.X/ D 	.fx2; x3g/ D 1, 	.fx1; x2g/ D 	.fx1; x3g/ D 3=4,
and 	 is zero for singletons. Consider f D .1; 1; 1/ and f 0 D .0; 6=5; 6=5/. Then
f 0 >	SD f , however

R cav f d	 D 5=4 > 6=5 D R cav f 0 d	.
Moreover, Lehrer shows in [222, Example 5] that no nontrivial integral can

satisfy both monotonicity w.r.t. stochastic dominance and concavity.

}
We finish this section by giving a characterization of the concave integral. To this

end, we consider functionals I	 W RXC ! R depending on a given capacity 	, and
we introduce the following properties:

(i) Accordance for additive measures (AAM): If P is an additive capacity, IP DR � dP;
(ii) Independence of irrelevant events (IIE): For every S � X, I	.1S/ D I	S.1S/,

where 	S indicates the restriction of 	 to 2S (subgame).

Theorem 4.83 (Lehrer [222]) Let I	 W RXC ! R be a functional depending on a
capacity 	 on X. The following propositions are equivalent:

(i) I	 is monotonic w.r.t. the capacity 	, concave, positively homogeneous, and
satisfies (AAM) and (IIE);

(ii) I	 D R cav � d	 for every capacity 	.

Sketch of the Proof. (ii))(i) is clear. As for the converse, monotonicity of I	
implies that for every additive capacity satisfying P > 	, we have by (AAM)
IP D R � dP > I	, which entails minP>	

R � dP > I	. By Theorem 4.81(iii), we
deduce that

R cav � d	 > I	. On the other hand, because I	 is positively homogeneous
and concave, by Theorem 4.81(ii), it remains to prove that I	.1S/ > 	.S/ for all
S 2 2X in order to show that

R cav � d	 6 I	, which concludes the proof. The fact
that I	.1S/ > 	.S/ can be shown by induction on jSj, but the argument is somewhat
involved. �
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4.11.3 The Decomposition Integral

Here also we consider jXj D n and F D 2X.
The decomposition integral, proposed by Even and Lehrer [126], is a gener-

alization of both the Choquet and the concave integrals. The idea is simply to
fix a “vocabulary” for the decompositions. If only chains are allowed for the
decomposition of a function, then the Choquet integral obtains as the best achievable
value for such decompositions, as will be shown in Theorem 4.86. If no restriction
applies, then the concave integral is obtained. As we will see, the Shilkret integral
can also be recovered. The material of this section is based on [126], to which the
readers can refer for more details.

Let f 2 R
XC and a collection D � 2X be fixed. A D-subdecomposition of f is a

summation
P

S2D ˛S1S such that

(i)
P

S2D ˛S1S 6 f ;
(ii) ˛S > 0 for all S 2 D.

A D-subdecomposition is a D-decomposition if equality is satisfied in (i). Consid-
ering D a set of collections D � 2X , we say that a (sub)decomposition of f is
D-allowable if it is a D-(sub)decomposition of f with D 2 D.

Definition 4.84 Let D be a set of collections D � 2X , f 2 R
XC be a function and 	

a capacity on X. The decomposition integral of f w.r.t. 	 and D is given by

Z

D

f d	D sup

(
X

S2D
˛S	.S/ W

X

S2D
˛S1S is a D-allowable subdecomposition of f

)

:

As for the concave integral, the supremum can be replaced by a maximum because
the decomposition integral is the optimal solution over a finite number of linear
programming problems (one for each D 2 D).

The following example shows why it is necessary to consider subdecompositions
instead of decompositions.

Example 4.85 Suppose X D f1; 2; 3g, 	.1/ D 	.2/ D 	.3/ D 1
3
, 	.12/ D

	.13/ D 1
2
, 	.23/ D 11

12
and 	.123/ D 1. Consider the function f D .3; 5; 2/

and D defined as follows:

D D ff1; 23g; f12g; f2; 13gg:

The optimal subdecomposition of f is 3 �11C2 �123, yielding the value 3 � 1
3
C2 � 11

12
D

210
12

for the integral. Observe that no D-allowable decomposition exists. Þ

Obviously, if D D f2Xg or D D 22
X
, the maximum is achieved by a

decomposition (because 	 and the ˛S’s are nonnegative), and we obtain
R
D D R cav,

which shows that among the decomposition integrals, the concave integral yields
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the highest value. We introduce two additional families Dchain and Dsing:

Dchain D fD � 2X W D is a chain in .2X;�/g
Dsing D ffSg W S 2 2Xg

We show that these two families permit to recover the Choquet and Shilkret
integrals.

Theorem 4.86 For any f 2 R
XC and any capacity 	 on X,

Z

f d	 D
Z

Dchain
f d	

D max

(
X

S2D
˛S	.S/ W

X

S2D
˛S1S is a Dchain-allowable decomposition of f

)

:

Proof [126] We first prove the second equality; i.e., the subdecomposition amounts
to a decomposition. Define g D Pk

iD1 ˛i1Ai with the following properties: (a) g is
a Dchain-allowable subdecomposition of f , with A1 � A2 � � � � Ak, achieving the
maximum of

Pk
iD1 ˛i	.Ai/; (b) ˛i > 0 for i D 1; : : : ; k; (c) there is no g0 satisfying

(a) and (b) such that g0 > g with at least one strict inequality.
Let us show that g is a decomposition of f . Suppose on the contrary that there

exists j 2 X such that gj < fj. If j 2 Ai for all i D 1; : : : ; k, then fA1; : : : ;Ak; f jgg
is a chain. Letting g0 D g C . fj � gj/1j, we see that g0 satisfies (a) and (b), and
since g0 > g and g0

j > gj, (c) is violated for g, a contradiction. We may therefore
assume that j does not belong to all Ai. Define i0 the smallest index such that j 62 Ai0 .
Then fA1; : : : ;Ai0 [f jg;Ai0 ; : : : ;Akg is a chain, and let us define g0 D P

i¤i0
˛i1Ai C

ˇ1Ai0[f jg C .˛i0 � ˇ/1Ai0
with ˇ D min. fj � gj; ˛i0 /. Observe that f > g0 > g

with in particular g0
j > gj. Moreover, g0 is an optimal subdecomposition because by

monotonicity of 	, 	.Ai0 /.˛i0 �ˇ/C	.Ai [f jg/ > 	.Ai0 /˛i0 . Therefore g0 satisfies
(a) and (b), so that g does not satisfy (c), a contradiction. We conclude that g D f .

It remains to show that the unique (up to sets with zero coefficients) optimal
decomposition of f is given by the chain fA"

� .1/; : : : ;A
"
� .n/g (Sect. 4.5.1), where �

is a permutation on X such that f�.1/ 6 � � � 6 f�.n/. It suffices to show that if fm D f`,

then m 2 A"
� .i/ , ` 2 A"

� .i/ for all i D 1; : : : ; n. Suppose on the contrary that there
exists i0 such that ` 2 A"

� .i0/ and m 62 A"
� .i0/. Then by (b) fm D gm < g` D f`, a

contradiction. ut
Theorem 4.87 For any f 2 R

XC and any capacity 	 on X,

Z Sh

f d	 D
Z

Dsing
f d	:
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Proof

Z

Dsing
f d	 D max

(
X

S2D
˛S	.S/ W

X

S2D
˛S1S is a Dsing-allowable subdecomposition of f

)

D max f˛	.S/ W ˛1S 6 f ; S � X; ˛ > 0g D max f˛	. f > ˛/ W ˛ > 0g

D
Z Sh

f d	:

ut
We summarize the main properties of the decomposition integral.

Theorem 4.88 Let f 2 R
XC be a function, 	 be a capacity and D be a set of

collections D � 2X. The following properties hold:

(i)
R

D � d	 is positively homogeneous;
(ii)

R

D � d	 is monotonic w.r.t. the integrand;
(iii)

R

D � d	 is monotonic w.r.t the capacity;
(iv)

R

D � dP D R � dP for every additive capacity P if and only if every function
f 2 R

XC has a D-decomposition with D 2 D.

(Proof is easy and omitted.)
An interesting question is under which conditions a set of collections D yields

an integral smaller than the integral w.r.t another set of collections D0. To answer
this question, we say that a collection C � 2X is independent if the vectors f1SgS2C
are linearly independent. Clearly, if D is an independent collection, then for each
f 2 R

XC, there is a unique D-decomposition.

Theorem 4.89 Suppose that D and D0 are two sets of collections. Then
R
D � d	 6R

D0 � d	 for every capacity 	 on X if and only if for every D 2 D and every
independent collection C � D, there exists D0 2 D0 such that C � D0.

The proof is based on the fact that if D yields an optimal D-allowable subdecom-
position of f , then there exists an independent collection C � D that also yields an
optimal D-allowable subdecomposition of f . Hence, if there exists D0 2 D0 such
that C � D0, the highest level achieved by a D0-subdecomposition is at least as high
as
R
D f d	. The converse statement is however much harder to prove [126].

The next topic of interest is related to additivity: we know from Theorem 4.28
that the Choquet integral is additive for comonotonic functions, that is, functions
inducing the same chain of level sets. Now, from Theorem 4.86, we know that the
“vocabulary” of the Choquet integral is precisely the set of chains. One would expect
that in general, additivity of the decomposition integral holds for those functions
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having the same collection yielding their optimal subdecompositions. It turns out
that this is not true in general, as shown by the following example.

Example 4.90 Take X D f1; 2g, D be the set of partitions of X, and 	 defined by
	.1/ D 	.2/ D 1

3
, 	.12/ D 1. Consider two functions f D .�; 1/, g D .1; �/, � > 0

small enough so that the optimal decomposition of both f and g uses D D ff1g; f2gg.
Then

R

D f d	 D R

D g d	 D 1
3
.1 C �/. Observe that with D0 D f12g we obtain a

decomposition of f C g yielding
R

D. f C g/ d	 D 1 C �, which is strictly greater
than

R
D f d	C R

D g d	 D 2
3
.1C �/. Þ

We say that f is leaner than g, for f ; g 2 R
XC, if there exist optimal decompositions

f D P
S2C ˛S1S, g D P

S2C0 ˇS1S with ˛S > 0, 8S 2 C, ˇS > 0, 8S 2 C 0, and
such that C � C 0 (roughly speaking, f can be decomposed with less sets than g). It
is important to note that, because optimality of the decomposition depends on 	, f
can be leaner than g for some capacities, but not for all of them.

Theorem 4.91 (Co-decomposition additivity of the decomposition integral)
Suppose that D is a set of collections satisfying (i) Every f 2 R

XC has an optimal D-
allowable decomposition for every capacity 	 on X, and (ii) If f D P

S2D ˛S1S D
P

S2D0 ˇS1S with D;D0 2 D, then D00 D fS W ˛S > 0 or ˇS > 0g belongs to D.
Then, for every capacity	 on X and for every f ; g 2 R

XC such that f is leaner than g,

Z

D

. f C g/ d	 D
Z

D

f d	C
Z

D

g d	: (4.93)

Proof [126] Consider two functions f ; g 2 R
XC such that g is leaner than f , with

D-allowable optimal decompositions f D P
S2C ˛S1S, g D P

S2C ˇS1S, with ˛S >

0; ˇS > 0 for all S 2 C. Let
P

T2D �T1T be an optimal D-allowable decomposition
of f C g. If this decomposition is equal to

P
S2C.˛S C ˇS/1S, then clearly (4.93)

holds. Otherwise, we have
R

D. f C g/ d	 >
R

D f d	C R

D g d	.
By assumption (ii) on D, D0 D fS 2 2X W ˛S C ˇS > 0 or �S > 0g belongs to

D, so that f ; g; f C g have optimal decompositions using D0. Suppose that
R

D. f C
g/ d	 >

R

D f d	C R

D g d	. For a sufficiently small � > 0,

f D
X

S2C
˛S1S � �

X

S2C
.˛S C ˇS/1S C �

X

T2D
�T1T

is a decomposition of f using sets in D0. It follows that

Z

D

f d	 >
X

S2C
˛S	.S/� �

X

S2C
.˛S C ˇS/	.S/C �

X

T2D
�T	.T/

>

Z

D

f d	 � �
Z

D

f d	 � �
Z

D

g d	C �

�Z

D

f d	C
Z

D

g d	

	

D
Z

D

f d	;

a contradiction. ut
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The above theorem generalizes Theorem 4.28 on comonotonic additivity of the
Choquet integral. This can be seen as follows. Take f ; g comonotone functions
and let D be the chain containing the sets used in their optimal decompositions.12

Consider h� D P
S2D �

n1S for some � > 0, and observe that h� 6 �1X; moreover, f
is leaner than h� and g is leaner than f C h� . By Theorem 4.91, we get

Z

Dchain
. f C g C h�/ d	 D

Z

Dchain
g d	C

Z

Dchain
. f C h�/ d	

D
Z

Dchain
g d	C

Z

Dchain
f d	C

Z

Dchain
h� d	:

Letting � ! 0, we get comonotonic additivity of the Choquet integral.
Theorem 4.91 permits also to deduce under which conditions the concave integral

is additive. Since D reduces to f2Xg, the conditions on D in the theorem are
satisfied, so that the concave integral is additive for functions having optimal
decompositions such that any set involved in the decomposition of one is also used
in the decomposition of the other.

As for the Shilkret integral, the theorem cannot be used because Dsing does not
fulfill the required conditions.

The next theorem investigates under which conditions the decomposition is con-
cave, or monotonic vs. stochastic dominance (see Definition 4.23), or translation-
invariant.

Theorem 4.92 Let D be a set of collections D � 2X. The following holds.

(i)
R
D � d	 is concave for every capacity 	 on X if and only if there exists a set of

collections D0 reduced to a singleton D such that
R
D � d	 D R

D0 � d	 for all
capacity 	;

(ii)
R
D � d	 is monotonic w.r.t. stochastic dominance if and only if there exists k 2
N such that D is a set of chains of length at most k containing all chains of
length k;

(iii) For every f 2 R
XC, every c > 0 and normalized capacity 	,

Z

D

. f C c1X/ d	 D
Z

D

f d	C c

if and only if D is a set of chains such that for every C 2 D, there exists C 0 2 D
such that C � C 0 and X 2 C 0.

(See [126] for a proof.)

12Note that these sets do not depend on the capacity, contrarily to the general case.
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4.11.4 Pseudo-Additive Integrals, Universal Integrals

Universal integrals try to answer the following question: What is an integral w.r.t.
a capacity?, using an axiomatic approach. They were proposed by Klement et
al. [211] (see also [212]), and include as particular cases the Choquet, Sugeno
and Shilkret integrals, but not the concave integral (and consequently, not the
decomposition integral). The mathematical setting in [211] being different from ours
(measurability, unbounded functions and measures, etc.), we do not go deeply into
details and refer the readers to the above cited papers.

The name “universal” comes from the property that these integrals are defined
w.r.t. any measurable space .X;F/, where F is a �-algebra. Let us denote by S the
class of all measurable spaces. We deal with functionals I whose domain is denoted
by D, defined by

D D
[

.X;F/2S
MG.X;F/ � U.X;F/

where MG.X;F/ is the set of all capacities on .X;F/, and U.X;F/ the set of all
F -measurable functions on X.

We define a pseudo-multiplication as an operator ˝ W Œ0;1�2 ! Œ0;1� being
nondecreasing in each place, having 0 as annihilator (i.e., a ˝ 0 D 0˝ a D 0 for all
a 2 Œ0;1�), and having a neutral element e (i.e., e ˝ a D a ˝ e D a).

A functional I W D ! Œ0;1� is a universal integral if it satisfies the three
following axioms:

(A1) For any measurable space .X;F/, the restriction of I to MG.X;F/� U.X;F/
is nondecreasing in each place;

(A2) There exists a pseudo-multiplication ˝ such that

I.	; c � 1A/ D c ˝ 	.A/ ..	; c � 1A/ 2 D/I

(A3) If G	; f D G	0;f 0 , then I.	; f / D I.	0; f 0/.

It is not difficult to prove that a functional I on D is a universal integral for some
pseudo-multiplication ˝ if and only if I is a distortion of the decumulative function:
I.	; f / D J.G	; f /, where J is nondecreasing and satisfies J.c � 1�0;d�/ D c ˝ d for all
c; d 2 Œ0;1�.

It can be proved that the Sugeno and Shilkret integrals are smallest universal
integrals (in the sense of the usual ordering for functions). More precisely, for a
fixed ˝, the smallest universal integrals have the form

I.	; f / D sup
t2�0;1�

.t ˝ 	. f > t//:

The Sugeno and Shilkret integrals are recovered with the minimum and the product,
respectively.
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An important class of universal integrals can be obtained as follows. For a fixed
pseudo-multiplication ˝, define a pseudo-addition as an operator ˚ W Œ0;1�2 !
Œ0;1� that is continuous, associative, nondecreasing in each place, has 0 as neutral
element (from which it follows that it is also commutative), and which is left-
distributive w.r.t. ˝.

From ˚ we define the pseudo-difference � by

a � b D inffc 2 Œ0;1� W b ˚ c D ag .0 6 b 6 a 6 1/:

Taking any simple function f on X, with range values a1 < � � � < an, defining the
subsets Ai D fx 2 X W f .x/ > aig, i D 1; : : : ; n, we define similarly to (4.17) the
quantity

Isimple
˝;˚ .	; f / D

nM

iD1

�
.ai � ai�1/˝ 	.Ai/

�
(4.94)

with a0 D 0, and for any capacity 	 on some measurable space .X;F/.

Theorem 4.93 Let ˚;˝ be defined as above. The functional I˝;˚ on D defined by

I˝;˚.	; f / D sup
˚
Isimple
˝;˚ .	0; f 0/ W .	0; f 0/ 2 D; f 0 simple ;G	0;f 0 6 G	; f

�

for any .	; f / 2 D, is a universal integral that is an extension of Isimple
˝;˚ .

Remark 4.94

(i) One can take ˚ D sup, leading in particular to the Sugeno integral (˝ D
min) and the Shilkret integral (˝ is the usual product). Moreover, the Choquet
integral is recovered with ˚ D C and the usual product for ˝. Also, the
Choquet-like integrals of Mesiar [239] are particular cases of such universal
integrals.

(ii) A similar construction can be done also when working on the interval Œ0; 1�
instead of Œ0;1�, considering normalized capacities and functions with range
included in Œ0; 1�. Then the pseudo-multiplication reduces to a semicopula
[118] (nondecreasing, 1 is neutral element, smaller than minimum). If associa-
tivity and commutativity are also required, then one obtains triangular norms
(t-norms), which are the dual operations of t-conorms (see Sect. 2.8.5). With
˚ D sup and ˝ a strict t-norm (i.e., isomorphic to the product), the Sugeno-
Weber integral is recovered [346].

(iii) When restricting to Œ0; 1�, many other similar integrals have been defined. The
Benvenuti integral [19] and the Murofushi integral [251] have exactly the same
expression (4.94), however, the pseudo-multiplication and pseudo-addition
have different definitions. The readers may consult the above references for
more detail, as well as the survey in [177, Sect. 5.6], and the thorough analysis
of Sander and Siedekum [281–283]. }
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4.12 The Choquet Integral for Nonmeasurable Functions

So far, integrals were defined for measurable functions and games or capacities
defined on an algebra F built on X. Usually F is a proper subset of the power
set 2X (especially if X is infinite), so that some functions are not measurable,
and therefore their integral cannot be computed. The question we address in this
section is precisely: How can we compute the integral of a nonmeasurable function?
Although quite odd, the question makes sense, even in the finite case. Indeed,
suppose that in some practical situation, like the one described in Chap. 6, it turns
out that it is impossible to determine the value of a capacity on some subsets of
X, because, e.g., of insufficient knowledge. Therefore, F � 2X and some functions
become nonmeasurable. However, if functions come from observations, any kind of
function is likely to occur and we would like nevertheless to compute its integral
(expected value). We will see that, with the Choquet integral and restricting to the
case where X is finite, there is a natural solution, based on an approach similar to
the one used for the concave integral (Sect. 4.11.2). The material of this section is
based on Faigle and Grabisch [130], to which the readers can refer for more detail.

Let us consider jXj D n, and fix a set system F , which is not necessarily an
algebra. We know from Sect. 2.15.5 that any game v on .X; 2X/ can be decomposed
as v D vC � v�, where vC; v� are totally monotone capacities. Here, we do the
same for games on .X;F/:

vC D
X

A2F W mv.A/>0

mv.A/uA; v� D
X

A2F W mv .A/<0

.�mv.A//uA: (4.95)

We first define the Choquet integral w.r.t. a totally monotone capacity b on F , by
taking the smallest functional I being positively homogeneous, superadditive, and
such that I.1A/ > b.A/ for all A 2 F . Proceeding as for the concave integral, we
find that the integral of any nonnegative function f is given by

Z

F
f db D max

(
X

A2F
˛Ab.A/ W

X

A2F
˛A1A 6 f ; ˛A > 0;8A 2 F

)

(4.96)

D min

(
X

i2X

Pi fi W
X

i2A

Pi > b.A/;8A 2 F ;Pi > 0;8i 2 X

)

: (4.97)

Note that this is the decomposition integral of f w.r.t. b with vocabulary D D fFg
(Sect. 4.11.3). Now, for any game v on .X;F/, the Choquet integral of a mapping
f W X ! RC w.r.t. v is defined by

Z

F
f dv D

Z

F
f dvC �

Z

F
f dv�: (4.98)

We summarize the main properties of this integral.
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Theorem 4.95 Let f W X ! RC be a function and v be a game on .X;F/, where F
is any set system. The following properties hold.

(i) Positive homogeneity:

Z

F
˛f dv D ˛

Z

F
f dv .˛ > 0/I

(ii) For any S 2 F ,

Z

F
f duS D min

i2S
fi

where uS is the unanimity game w.r.t. S;
(iii) If F is weakly union-closed,

Z

F
f dv D

X

S2F
mv.S/min

i2S
fi

where mv is the Möbius transform of v;
(iv) If F is weakly union-closed,

Z

F
f dv D

Z

f d Ov

where the right-hand side integral is the ordinary Choquet integral, and Ov is a
game on .X; 2X/ defined by

Ov.S/ D
Z

F
1S dv D

X

F maximum in F.S/
v.F/ .S 2 2X/;

with F.S/ D fF 2 F W F � Sg;
(v) If F is weakly union-closed,

R
F � dv is superadditive if and only if it is concave

if and only if Ov is supermodular.

Proof

(i) Clear.
(ii) Let j 2 S such that fj is minimum on S. Then P� 2 R

X defined by P�
j D 1 and

P�
i D 0 for all i ¤ j, is feasible for the linear program

min
P>0

hf ;Pi s.t. P.T/ > 1; T 2 F ;T � S;
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while �� 2 R
FC with the only nonzero component ��

S D fj is feasible for the
dual linear program

max
�>0

huS; �i s.t.
X

T	S

�T1T 6 f :

In view of hf ;P�i D fj D huS; �
�i, linear programming duality guarantees

optimality, which proves the result.
(iii) We write v D vC � v� as in (4.95). Due to the definition of the integral by

(4.98), it suffices to show that

Z

f d
�X

S2T
˛SuS

�
D
X

S2T
˛S min

i2S
fi

for any T � F , and ˛S > 0 for all S 2 T . Make a partition of T into blocks
fS1; : : : ; Skg; fSkC1; : : : ; Sk0g; : : :, which are the smallest subcollections such
that for every S in a block, one can find another set T in the same block so
that S \ T ¤ ¿, and no set in a block has a nonempty intersection with a set of
another block (in a sense, these are the “connected components” of T ).

The mapping f being given, for each S 2 T , pick iS 2 S such that fiS realizes
the minimum of f in S. In each block, number the sets S so that the values fiS are
nondecreasing; i.e., fiS1 6 � � � 6 fiSk

in the first block, and similarly for the other
ones. Since v0 D P

S ˛SuS is totally monotone, by (4.97), the integral is the
optimal value z� of the linear program z D minhP; f i subject to P.S/ > v0.S/,
S 2 F , Pi > 0;8i, using the shorthand P.S/ D P

i2S Pi.
Let us define P� by P�

iS
D ˛S, for all S 2 T , and P�

i D 0 otherwise. It is
easy to check that P� is a feasible solution of the above linear program. We
remark that z D P

S2T ˛S mini2S fi, the desired result. Therefore, it remains to
prove optimality. We use for this complementary slackness (Theorem 1.9).

The dual program is given by (4.96): maximize w D h�; v0i subject toP
S2F �S1S 6 f , �S > 0;8S 2 F . We propose a solution �� constructed

as follows. Considering the first block of the partition of T , we define the sets

Sj D Sj [ SjC1 [ � � � [ Sk . j D 1; : : : ; k/;

and similarly for the other blocks: SkC1; : : : ;Sk0 ; : : :. Observe that because F
is weakly union-closed, all these sets are members of F . We put

��
S1 D fiS1

��
Sj

D fiSj
� fiSj�1

. j D 2; : : : ; k/
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and similarly for the other blocks. For all other sets S 2 F , we put ��
S D 0.

By complementary slackness, optimality of P amounts to checking that (a) ��
is feasible, (b) is 0 for all nontight constraints in the primal program, and (c)
gives tight constraints in the dual program for all iS, S 2 T .

Proving (b) amounts to proving that P�.Sj/ D v0.Sj/ for all j D 1; : : : ; k
such that fiSj

> fiSj�1
(letting fiS0 D 0), and similarly for all other blocks. We

have P�.Sj/ D Pk
iDj ˛Sj . On the other hand, v0.Sj/ >

Pk
iDj ˛Sj , with strict

inequality if and only if Sj contains some S` with 1 6 ` < j. But this would
contradict the assumption fiS` < fiSj

.
For every j D 1; : : : ; k, it is easily verified that

P
S2F ��

S1S.iSj/ D fiSj
, and

similarly for all blocks. This proves (c), we prove now (a). ��
S > 0 for all

S 2 F by construction. It remains to prove
P

S2F ��
S1S.i/ 6 fi for all i ¤ iS,

S 2 T . If i 62 S
T , then clearly the left member of the inequality is 0, so that

the inequality holds by nonnegativity of f . Suppose then i 2 S
T , w.l.o.g., in

the first block. Call j the largest index of Sj 2 fS1; : : : ; Skg such that i 2 Sj. We
have then

X

S2F
��

S1S.i/ D
jX

`D1
��
S` D fiSj

6 fi;

where the inequality comes from the definition of fiSj
. The proof is complete.

(iv) Let Ov be the game on .X; 2X/ defined through its Möbius transform by

m Ov.S/ D
(

mv.S/; if S 2 F
0; otherwise.

Then, by (iii) and (4.55), we immediately have

Z

F
f dv D

Z

f d Ov:

Now, by (iii),

Z

F
1S dv D

X

T2F
mv.T/min

i2T
1S.i/ D

X

T�S
T2F

mv.T/ D
X

T�S

m Ov.T/ D Ov.S/:

Lastly, if S 2 F , we have Ov.S/ D P
T�S m Ov.T/ D P

T�S
T2F

mv.T/ D v.S/. Now,

if S 62 F , because F is weakly union-closed, the largest subsets of S belonging
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to F are necessarily disjoint, hence:

Ov.S/ D
X

T�S

m Ov.T/ D
X

F maximum in F.S/

X

T�F

m Ov.T/

D
X

F maximum in F.S/

X

T�F
T2F

mv.T/ D
X

F maximum in F.S/
v.F/:

(v) Since positive homogeneity holds, the first equivalence is established
(Sect. 1.3.7). The second equivalence comes from (iv) and Theorem 4.35
(i) and (ii).

ut
Remark 4.96

(i) Theorem 4.95(iv) shows that the Choquet integral on weakly union-closed
systems essentially equals the classical Choquet integral, and therefore inherits
all of its properties (in particular, comonotonic additivity).

(ii) The game Ov is an extension of v on .X; 2X/ because it coincides with v on
F . For this reason, if f is a measurable function on .X;F/, then

R

F f dv is
the usual Choquet integral, which shows that

R

F � dv can be considered to be
an extension of the Choquet integral to every function, as announced in the
beginning of this Section.

(iii) The extension Ov is well known in cooperative game theory as Myerson’s
restricted game [256], and is used in the analysis of games on communication
graphs.

(iv) If v is a capacity, then Ov is not necessarily a capacity, as shown by the following
example: take N D f1; 2; 3g, and F D f123; 1; 2;¿g. Then Ov.N/ D v.N/ and
Ov.12/ D v.1/Cv.2/. Taking v.N/ D v.1/ D v.2/ D 1 yields a nonmonotonic
game. It follows that the Choquet integral w.r.t. a capacity on F may be not
monotone w.r.t. the integrand.

}
More results can be obtained for capacities and if F is a set system closed

under union (note that this implies X 2 F ). We recall from Sect. 2.19.2 that
supermodularity is defined for weakly union-closed systems [Eq. (2.119)]. For
union-closed systems, the definition simplifies as follows: a game v on .X;F/ is
supermodular if for any S;T 2 F ,

v.S [ T/C v..S \ T/0/ > v.S/C v.T/; (4.99)
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where .S \ T/0 is the largest subset of S \ T in F . For the proof of the next result,
it is convenient to consider 0 as a mapping from 2X to F , assigning to every set its
largest subset in F .

Lemma 4.97 Let F be closed under union. For any capacity 	 on F , 	 is
supermodular if and only if O	 is.

Proof )/ Let us take S;T 2 2X , and consider S0;T 0 the corresponding largest
subsets of S;T in F . Since F is union-closed, by supermodularity of 	, we have

	.S0 [ T 0/C 	..S0 \ T 0/0/ > 	.S0/C 	.T 0/:

Since S0 [ T 0 � .S [ T/0 and .S0 \ T 0/0 � .S \ T/0, monotonicity of 	 implies

	..S [ T/0/C 	..S \ T/0/ > 	.S0/C 	.T 0/

which gives

O	.S [ T/C O	.S \ T/ > O	.S/C O	.T/;

proving supermodularity of O	.
(/ Take S;T 2 F . Then supermodularity of O	 reads

O	.S [ T/C O	.S \ T/ > O	.S/C O	.T/;

which can be rewritten as

	.S [ T/C 	..S \ T/0/ > 	.S/C 	.T/;

which is supermodularity of 	. ut
Theorem 4.98 Let F be a set system closed under union, and 	 be a capacity on
.X;F/. The following are equivalent:

(i) For every function f W X ! RC,

Z

F
f d	 D max

nX

S2F
�S	.S/ W

X

S2F
�S1S 6 f ; � > 0

o

D min
nX

i2X

Pi fi W P.S/ > 	.S/;8S 2 F ;P > 0
o
I

(ii)
R

F � d	 is superadditive;
(iii) 	 is supermodular.
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Proof (i))(ii) We recognize in (i) the concave integral (see Sect. 4.11.2). Because
the integral is also positively homogeneous, concavity is equivalent to superadditiv-
ity.

(ii))(iii) By Theorem 4.95(iv),
R

f d O	 is superadditive, which is equivalent to
supermodularity of O	 by Theorem 4.35 (i) and (ii). We conclude using Lemma 4.97.

(iii))(i) Suppose w.l.o.g. f1 6 f2 6 � � � 6 fn. By Theorem 4.95(iv), we know
that

Z

F
f d	 D

nX

iD1
. fi � fi�1/ O	.fi; : : : ; ng/ D

nX

iD1
. fi � fi�1/	.Fi/

with f0 D 0, and Fi D fi; : : : ; ng0; i.e., the largest subset of fi; : : : ; ng in F . We claim
that fF1;F2; : : : ;Fng is a chain in F , with F1 � F2 � � � � � Fn. Indeed, suppose that
Fi and Fj, with i < j, are not comparable. Then Fi [ Fj 2 F and strictly includes Fi

and Fj. By definition, Fi and Fj are subsets of fi; : : : ; ng, and therefore so is Fi [ Fj.
But this contradicts the choice of Fi as largest subset of fi; : : : ; ng.

Observe that several Fi’s may be identical, and in this case they are necessarily
consecutive. We define

�Fi D
X

j>i
FjDFi

. fj � fj�1/ .i D 1; : : : ; n/;

and �S D 0 otherwise. We have to prove that � is feasible and optimal. Clearly,
� > 0. Now, for any i 2 X,

X

S

�S1S.i/ 6
nX

jD1
. fj � fj�1/1f j;:::;ng.i/ D

iX

jD1
. fj � fj�1/1f j;:::;ng.i/ D fi:

We prove optimality by complementary slackness. We propose P� as solution of the
dual defined by

P�
i D 	.Fi/� 	.FiC1/ D O	.fi; : : : ; ng/� O	.fi C 1; : : : ; ng/ .i D 1; : : : ; n/:

By Lemma 4.97, we know that O	 is supermodular. We recognize in P� the marginal
vector of O	 associated to permutation n; n � 1; : : : ; 1 (Sect. 3.2.2). By (3.9), we
deduce that P�.fi; : : : ; ng/ D O	.fi; : : : ; ng/ D 	.Fi/ for all i. We claim that
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P�.fi; : : : ; ng/ D P�.Fi/. Indeed, if Fi D fi; : : : ; ng there is nothing to prove.
Suppose then j 2 fi; : : : ; ng n Fi. Then j 62 Fk, k > i, and in particular j 62 Fj;FjC1. It
follows that Fj D FjC1, hence

P�
j D 	.Fj/� 	.FjC1/ D 0;

which proves the claim. Finally, P� is feasible by Theorem 3.15(i) and (ii). As a
conclusion, P� is feasible for the dual program and has tight constraints for the
nonzero variables of the primal, proving optimality. ut
Remark 4.99 Our presentation of results and proofs fairly differs from the original
paper [130]. In the latter, slightly more general results are proved, at the price
of some more complex machinery to be introduced. In particular, a Monge-type
algorithm,13 which computes the Choquet integral, plays a central rôle in [130].
In fact, a simple version of the Monge algorithm is hidden in our proof of
Theorem 4.95(iii).

See also Remark 3.33, giving a related work. There, Ov.c/ is nothing other than
the Choquet integral of c w.r.t. v in the above sense. }

13Gaspard Monge (Beaune, 1746 – Paris, 1818) is a French mathematician who is at the origin of
descriptive geometry. He is also considered to be a pioneer of Operations Research, by his works
on the optimal transportation of masses (Mémoire sur la théorie des déblais et remblais, 1781).
Monge studied a geometric transportation problem in which a set of locations s1; : : : ; sn of mass
points has to be matched optimally (in the sense of minimizing the total cost) with another set of
locations t1; : : : ; tn, and proved that optimality was reached if the transportation lines do not cross.
This geometric fact can be expressed as follows: if the costs cij of matching objects si with tj have
the “uncrossing” property:

cij C ck` � cmax.i;k/;max. j;`/ C cmin.i;k/;min. j;`/

then the optimal matching is .s1; t1/; : : : ; .sn; tn/. This is also called the “north-west corner rule.”
Translated into the language of set functions, the uncrossing property is in fact submodularity:

v.A/C v.B/ > v.A [ B/C v.A \ B/:



Chapter 5
Decision Under Risk and Uncertainty

This chapter opens the part of the book on applications of set functions in decision
making. The foundations of decision making are mainly due to John von Neumann
and Oskar Morgenstern, although the concepts of utility function and expected
utility go back to Daniel Bernoulli and Blaise Pascal. The area of decision making
which is addressed in this chapter is decision under risk and uncertainty. It deals with
situations where the decision maker is faced with uncertainty: the consequences of
his possible decisions depend on contingencies which are out of his control. The
occurrence or the non-occurrence of these contingencies determine what is called
the states of nature. If probabilistic information on the states of nature is available,
one speaks of decision under risk. Otherwise, it is assumed that the decision maker
has a personal, subjective probability measure on the states of nature in his mind,
in which case one speaks of decision under uncertainty. While classical models
solely rely on probability measures (expected utility), the observation of various
paradoxes, unexplained by expected utility, has lead to considering capacities
(viewed as nonadditive probabilities) and the Choquet integral in decision making.
This chapter tries to show the emergence of these new models. It does not pretend to
a full exposition of decision under risk and uncertainty, which would require a whole
book. For this reason, and because already many textbooks exist on this subject,
proofs of results are not given, except for some results which either are not so well
known, or for which it is less easy to find comprehensive references. Recommended
references for full exposition and details are Gilboa [153] and Wakker [339]; see
also Wakker [335], Quiggin [270], Takemura [325] and a survey by Chateauneuf and
Cohen [48]. The chapter ends with a presentation of qualitative decision making and
the use of the Sugeno integral, a topic which is generally absent from monographs
on decision making.

© Springer International Publishing Switzerland 2016
M. Grabisch, Set Functions, Games and Capacities in Decision Making,
Theory and Decision Library C 46, DOI 10.1007/978-3-319-30690-2_5

281



282 5 Decision Under Risk and Uncertainty

5.1 The Framework

5.1.1 The Components of a Decision Problem

We consider a situation where an agent (called the decision maker, abbreviated
by DM) has to make a choice between several possible actions. Each action has
some consequences or outcomes, depending on what is usually called the state of
nature. This expression means that the decision maker (DM) is unable to know
everything, and contingencies, on which the DM has no control, determine the exact
consequence of his action. We give in detail the components of a decision problem,
fixing notation and some assumptions.

(i) We denote the set of states of nature by S. It can be finite or infinite. In the
examples given below, S is most often finite, however it is easy to find examples
with an infinite (and even uncountable) S: think of the unknown value of a
continuous parameter, like temperature, the Dow Jones index, etc.

We make two important assumptions about S:

• S is exhaustive: the true (unknown) state of nature should belong to S. This
is sometimes called the closed world assumption;

• The elements of S are mutually exclusive: only one of them can realize.

Subsets of S are called events. We say that an event E � S is true or realizes
if the actual state of nature belongs to E. We call S the certain event and ¿ the
impossible event.

(ii) The set of consequences (outcomes) is denoted by C. For most decision
problems considered in this chapter, consequences are real numbers (note that
this is not the case for Example 5.3, however), which often represent amounts
of money. Therefore, unless specified otherwise, we assume throughout the
chapter that consequences are real numbers and identify C D R.

(iii) We call an act a mapping f W S ! C, which represents a possible action of the
decision maker, assigning to every state of nature a consequence. Acts are also
called prospects. We make the assumption that the range of acts is finite; i.e.,
acts have only a finite number of outcomes. We denote the set of acts by F.

Because the range of an act f is finite, say, ran f D fx1; : : : ; xng, it induces
a partition of S into events E1; : : : ;En given by Ei D f �1.xi/ for i D 1; : : : ; n.
Therefore, act f can be denoted by .E1; x1I : : : I En; xn/.

Another traditional notation for acts is the following: suppose f ; g are two
acts, and E � S is an event. Then fEg denotes the act equal to f on E and to g
on S n E; i.e.:

fEg.s/ D
(

f .s/; if s 2 E

g.s/; otherwise.
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(iv) We introduce a binary relation < on F, which is the preference relation of the
decision maker over the set of acts. f < g reads “f is preferred to g” (with
indifference allowed), or “f is at least as good as g”. The preference relation
is supposed to be a complete preorder, that is, complete and transitive (see
Sect. 1.3.1). As usual, � denotes the symmetric part of <, and f � g reads “f
is indifferent to g”, while  denotes the asymmetric part, and f  g reads “f
is strictly preferred to g”. To avoid trivialities, it is assumed throughout this
chapter that < is nondegenerate; i.e., there exist two acts f ; g such that f  g.

We give some examples to illustrate the previous notions.

Example 5.1 Janet is betting on a horse during a horse race. She bought a $5 ticket,
and if the horse on which she has bet wins, she will receive $1000, otherwise
nothing.

The set of states of nature is the set of horses, consequences are amounts of
money, and acts are bets on horses: if horse 1 is chosen, the consequence is either
$995 if this horse wins, or �$5 in the other cases. Þ
Example 5.2 Peter has to go to the university for an important meeting starting
at 9:00. He commutes by car, but there are several possible ways to reach the
university. The duration of the trip on each way depends on the state of the traffic
on that road, and the possible occurrence of a car accident or any other event.

The possible actions of Peter are the different routes to reach the university. The
states of nature are the possible states of the traffic on a given road (normal, accident,
more or less big traffic jam, etc.), and the consequence of an action is the delay with
which Peter arrives at his meeting (positive number if it is a delay, and negative if
he arrives before the start of the meeting). Þ

Example 5.3 (Example 2.13 revisited) When leaving home in the morning, Leonard
is wondering if he should take an umbrella or not, or even some raincoat. If the
weather is sunny, it would be unnecessary to take an umbrella and quite unpleasant
to wear a raincoat. If on the contrary the weather is rainy, an umbrella becomes
necessary, and even a raincoat in case of heavy rain.

The states of nature are the different possibilities for the weather (sunny, some
rain, heavy rain, etc.), and the acts are: to take nothing, to take an umbrella, and
to take an umbrella and wear a raincoat. The consequences are, for instance, to be
completely wet and catch a cold, to be safe, to sweat, to be hampered by an umbrella,
etc. Þ

Remark 5.4 So far, we did not introduce any order on the set of consequences C. If
C is a set of monetary values, the order is implicit, but this is not the case in general,
even if C D R. Observe that, identifying a consequence x 2 C with the constant act
x1S yielding x for every state of nature, the preference relation < on F induces an
ordering on C. }
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The above components of a decision problem are supposed to be given.1 An
important aim in decision theory is to construct a numerical representation of the
preference relation; i.e., to find a mapping V W F ! R satisfying

f < g , V. f / > V.g/ . f ; g 2 F/: (5.1)

The existence of such a function V is the main concern of measurement theory
(see Sect. 6.2, and in particular Theorem 6.4). Instead of giving a general answer
to this question, we propose several specific such functions V , and see under which
conditions they exist. Since these conditions bear mainly on <, that is, the preference
relation of the DM, such results on the existence of a given function V are called
behavioral foundations of V . A first obvious fact is that no mapping V can exist if
< is not complete or not transitive, simply because > is a complete and transitive
relation on R. This is why these conditions on < are primitive and are assumed
henceforth.

We give a first property of V (respectively, of <) that is considered as a basic
rationality requirement. We say that V (respectively, <) satisfies monotonicity if
whenever f .s/ > g.s/ for every state of nature s 2 S, then V. f / > V.g/
(respectively, f < g), and if f .s/ > g.s/ for every s 2 S then V. f / > V.g/
(respectively, f  g). Strict monotonicity holds if in addition f ¤ g implies
V. f / > V.g/ (respectively, f  g).

5.1.2 Introduction of Probabilities

The uncertainty bearing on the states of nature naturally leads to consider a
probability measure P on S, endowing S with some algebra. Then, acts can be seen
as real random variables, and a natural criterion is to choose an act maximizing the
expected value, as far as consequences are considered as money amounts. This is
called the expected value criterion.

1This is of course a kind of idealization, which hides the practical difficulties to obtain them. In
particular, depending on the kind of problem considered, depending also if one has a descriptive,
normative or constructive attitude, one cannot assume to know the preference relation of the DM
on the entire set F. Often one tries to obtain a model from a limited knowledge of <, with the help
of some additional assumptions on the model or the preferences, which permit to determine in fine
< on the whole set F. These considerations are however outside the scope of this chapter, and we
refer the readers to, e.g., Wakker [339] and Takemura [325, Chap.1, Sect. 4].
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There is a traditional distinction between two cases, which goes back to Frank
Knight2 (1921) [213]:

(i) An objective information on the probability distribution over the states of nature
is available (e.g., based on statistics, combinatorics, etc.). Then one speaks of
decision under risk;

(ii) No such objective information is available, only the subjective perception of
uncertainty by the DM remains. This case is referred to as decision under
uncertainty.

This distinction is well explained by John Keynes,3 in a 1937 paper [207, pp. 213–
214]:

By “uncertain” knowledge, let me explain, I do not mean merely to distinguish
what is known for certain from what is only probable. The game of roulette is
not subject, in this sense, to uncertainty; nor is the prospect of a Victory bond
being drawn. Or, again, the expectation of life is only slightly uncertain. Even
the weather is only moderately uncertain. The sense in which I am using the
term is that in which the prospect of a European war is uncertain, or the price
of copper and the rate of interest twenty years hence, or the obsolescence of
a new invention, or the position of private wealth-owners in the social system
in 1970. About these matters there is no scientific basis on which to form any
calculable probability whatever. We simply do not know.

The probability resulting from the subjective perception of uncertainty by the
decision maker, whenever it exists, is called subjective probability.

5.1.3 Introduction of Utility Functions

A utility function is a mapping u W R ! R (or more generally, u W C ! R, where C
is the set of consequences). Supposing that consequences are amounts of money, the
utility function represents the subjective perception of wealth by the decision maker.
Most often, utility functions are concave functions (like the logarithm), because
the perceived difference of wealth usually diminishes as the amount of money is
increasing: an increase from $1000 to $2000 is perceived as much more important
than an increase from $1,000,000 to $1,001,000.

More generally, a utility function yields a numerical translation of the satisfaction
of the DM regarding consequences, even nonnumerical (see Example 5.3).

2Frank Hyneman Knight (McLean County, Illinois, 1885 – Chicago, 1972) is an American
economist, founder of the Chicago school. He is famous for having introduced the distinction
between risk and uncertainty, but also for his debates on Pigou’s social costs.
3John Maynard Keynes (Cambridge, 1883 – Firle, 1946) is a British economist and essayist, among
the most influential theorists in economy of the twentieth century. He is the founder of Keynesian
macroeconomics.
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Utility functions are not given exogenously, they must be built from the
preference relation of the decision maker.

5.2 Decision Under Risk

As explained above, decision under risk supposes that a probability measure is
known on S, however the utility function on consequences is unknown.

To avoid intricacies, we make the following assumptions (same as in Wakker
[339, Chap. 2]), repeating previous assumptions mentioned in Sect. 5.1:

(Structural assumptions for risk)

(i) Acts take finitely many values;
(ii) Preference over acts depend only on the probability distribution over

the (finitely many) outcomes. Therefore, two acts .E1; x1I : : : I En; xn/

and .E0
1; x1I : : : I E0

n; xn/ with different events but yielding the same
probability distribution .p1; x1I : : : I pn; xn/ are indifferent;

(iii) (richness) Every probability distribution taking finitely many values is
available.

By Assumption (ii), it is enough to describe acts through their induced probability
distribution on outcomes. This is why in decision under risk acts are identified with
lotteries. Indeed, a lottery yields a finite number of possible outcomes x1; : : : ; xn,
each of them occurring with a known probability p1; : : : ; pn, respectively.

The richness assumption implies that the underlying set of states of nature is
infinite (since the number of outcomes n is not fixed). In summary, the set of lotteries
we consider, denoted by L, and on which bears the preference relation <, is the set
of all probability distributions with finite support on R (they correspond to simple
probability measures in Fishburn [141, Chap. 8]). The usual representation of a
lottery is given on Fig. 5.1. A particular case of interest is the sure lottery, which
yields some outcome ˛ with certainty. In what follows, we write simply ˛ instead
of .1; ˛/.

p1

p2

pn

...

x1

x2

xn

Fig. 5.1 Representation of the lottery .p1; x1I p2; x2I : : : I pn; xn/
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Given two lotteries p D .p1; x1I : : : I pn; xn/, q D .q1; x1I : : : I qn; xn/ on the same
set of consequences,4 one can define their convex combination or mixture, using
some � 2 Œ0; 1�. The mixture �p C .1 � �/q is a new lottery on the outcomes
x1; : : : ; xn defined by

�p C .1 � �/q D .�p1 C .1 � �/q1; x1I : : : I�pn C .1� �/qn; xn/:

The mixture of lotteries can be considered as a lottery whose consequences are
themselves lotteries (Fig. 5.2).

λ

1 − λ

p1

pn

q1

qn

...

...

x1

xn

x1

xn

Fig. 5.2 Mixture of two lotteries p; q

5.2.1 The Expected Utility Criterion

Supposing that the utility function u has been determined, the expected utility
criterion consists in choosing the lottery (act) p D .p1; x1I : : : ; I pn; xn/ with the
highest expected utility EU.p/:

EU.p/ D
nX

iD1
piu.xi/: (5.2)

Expected utility is a simple and natural criterion, because it yields the average
utility the decision maker can expect in the long run, taking into account all possible
events and their probabilities. Let us give two behavioral foundations of expected
utility. The first one is founded on the famous independence axiom.

Definition 5.5 A preference relation < on L satisfies independence if for all
lotteries p; q 2 L such that p  q, the following holds

�p C .1 � �/r  �q C .1 � �/r .� 2 �0; 1Œ ; r 2 L/:

4W.l.o.g. Indeed, any two lotteries can always be rewritten as two lotteries on the same set of
consequences, by assigning zero probabilities on the missing outcomes.
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A second property is needed: We say that < on L satisfies the Archimedean property
if for all lotteries p; q; r 2 L such that p  q  r, there exist �;	 2 �0; 1Œ such that

�p C .1 � �/r  q  	p C .1 � 	/r: (5.3)

The independence axiom looks rather natural5 (a mixture with any lottery does not
change the preference), but the Archimedean axiom is, however, less transparent. It
is a continuity axiom, saying in substance that no matter how r is bad (respectively,
good), and therefore could damage the lottery p (respectively, could improve p), it
is always possible to find � close enough to 1 (respectively, 	 close enough to 0) so
that the left-hand side (respectively, the right-hand side) inequality holds in (5.3).

Theorem 5.6 (Axiomatization of expected utility for risk (1st version)) (Fish-
burn [141, Theorem 8.2]) Let < be a binary relation on L. Under the above
structural assumptions for risk, the following two propositions are equivalent.

(i) < is complete and transitive, and satisfies independence and the Archimedean
property;

(ii) There exists a utility function u such that expected utility represents < (i.e.,
(5.1) is satisfied with V D EU). Moreover, u is unique up to a positive affine
transformation; i.e., of the form ˛u C ˇ, with ˛ > 0, ˇ 2 R.

Remark 5.7 A more general version where probability measures need not be simple
was proved by Fishburn [141, Theorem 8.4], completing results of von Neumann
and Morgenstern [333]. Also, the above result holds for any set of outcomes, not
necessarily R. Therefore, u is not supposed to be increasing. For a proof, see the
above references, or also Gilboa [153, Chap. 8]. }

The second axiomatization is less well-known but is more intuitive. It is based
on the notion of standard gamble. Fix two outcomes M;m 2 R such that M > m,
and set u.M/ D 1, u.m/ D 0. Given M > ˛ > m, find a probability p such that

˛ � .p;MI 1 � p;m/;

i.e., there is indifference between the sure lottery yielding ˛ and the lottery yielding
M with probability p, and m otherwise (Fig. 5.3). Now, the standard gamble

α ∼

p

1 − p

M

m

Fig. 5.3 A standard gamble

5Although highly controversial; see, e.g., [339, Sect. 2.7].
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solvability condition stipulates that p exists for every ˛ 2 �m;MŒ. Next, standard
gamble dominance holds if for every M > m and probabilities p > q, we have

.p;MI 1 � p;m/  .q;MI 1 � q;m/:

The last property involves mixtures of lotteries. Standard gamble consistency says
that for all outcomes ˛;M;m, all � 2 Œ0; 1� and all lotteries l 2 L, if ˛ � .p;MI 1 �
p;m/, then

�˛ C .1� �/l � �.p;MI 1 � p;m/C .1 � �/l

should hold as well (Fig. 5.4).

α ∼

p

1 − p

M

m

implies

λ

1 − λ

α

l

∼

λ

1 − λ

p

1 − p

l

M

m

Fig. 5.4 Standard gamble consistency

Theorem 5.8 (Axiomatization of expected utility for risk (2nd version))
(Wakker [339, Theorem 2.6.3]) Let < be a binary relation on L. Under the above
structural assumptions for risk, the following two propositions are equivalent.

(i) < is complete and transitive, and satisfies standard gamble solvability, standard
gamble dominance, and standard gamble consistency;

(ii) There exists an increasing utility function u such that expected utility represents
<. Moreover, u is unique up to a positive affine transformation.

5.2.2 Stochastic Dominance

Stochastic dominance is the second example of basic rationality requirement that
any preference relation or decision model should satisfy. Basically, it says that
shifting probability masses to higher outcomes should improve the act.

Let us represent lotteries by their decumulative distribution function (see
Sect. 4.2). For a lottery p D .p1; x1I : : : I pn; xn/ with 0 < x1 < x2 < � � � < xn,
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x4x3x2x1

p4

p3

p2

p1
x4
x3

x2

x1

p4 p3 p2 p1

Fig. 5.5 Decumulative function Gp of a lottery p with n D 4 (left) and computation of the expected

value E.p/ by G.�1/
p (right). The blue and yellow areas are identical because the right figure is the

flipped version of the left one

its decumulative distribution function is given by

Gp.x/ D Prob.lottery p yields an outcome > x/ D
nX

iDi.x/C1
pi .x 2 RC/;

with i.x/ D maxfi 2 f0; : : : ; ng j x > xig for x > 0, i.0/ D 0, and x0 D 0 [Fig. 5.5
(left)].

We say that a lottery p stochastically dominates (at first order)6 a lottery q if
Gp.x/ > Gq.x/ for every x 2 RC, with a strict inequality for at least one x, which
is written in short by Gp > Gq [see Sect. 1.1(ix)]. Then, a preference relation < (or
its numerical representation V) satisfies stochastic dominance if for all lotteries p; q,
Gp > Gq implies p < q. Stochastic dominance is strict if p  q replaces the latter
inequality.

We show that expected utility satisfies stochastic dominance if the utility function
u is nondecreasing (in the strict sense if u is increasing). Let us consider the
pseudo-inverse7 of Gp denoted by G.�1/

p ; i.e., the quantile function of p. It is easy
to see from Fig. 5.5 that the area under the decumulative function of a lottery
p D .p1; x1I : : : I pn; xn/ is equal to its expected value E.p/, given by the area under

6This definition comes from the more general definition given in Chap. 4 (Definition 4.23).
7Gp not being a bijection because of plateaus, its inverse does not exist. It is however easy to define
a “pseudo-inverse” by assigning to the inverse value of the height of a plateau some arbitrary value
in the segment representing the plateau. See Denneberg [80, Chap. 1] for a formal definition.
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the quantile function. Indeed,

area D
nX

iD1
.xiC1 � xi/

nX

jDi

pj D
nX

iD1
pixi D E.p/: (5.4)

It follows that if p stochastically dominates q, that is, Gp > Gq, then we have also

G.�1/
p > G.�1/

q , hence for every nondecreasing utility function u, G.�1/
p0 > G.�1/

q0 ,
with p0 D .p1; u.x1/I : : : I pn; u.xn// and similarly for q0, which yields EU.p/ >
EU.q/ (strict equality is obtained when u is increasing). As a conclusion, expected
utility satisfies stochastic dominance (respectively, strict stochastic dominance), as
soon as the utility function is nondecreasing (respectively, increasing). The converse
also holds.

5.2.3 Risk Aversion

A fundamental notion in decision under risk is risk aversion. In substance, it says
that risk averse people always prefer sure lotteries to any lottery yielding the same
expected value. Formally, a preference relation < exhibits risk aversion if for every
consequence ˛ 2 R, ˛ < p for every lottery p 2 L such that E.p/ D ˛. If the reverse
preference holds, then < exhibits risk seeking, and if indifference always holds, then
we speak of risk neutrality.

Under expected utility, risk aversion is characterized by concavity of the utility
function.

Theorem 5.9 (Risk aversion in EU) Under the expected utility criterion, risk
aversion holds if and only if the utility function u is concave; i.e.,

u.�x C .1 � �/x0/ > �u.x/C .1 � �/u.x0/ .x; x0 2 R; � 2 Œ0; 1�/: (5.5)

Proof If < is risk averse, we must have E.p/ < p for every lottery p, i.e.,

EU.E.p// > EU.p/

or, letting p D .p1; x1I : : : I pn; xn/,

u
� nX

iD1
pixi

�
>

nX

iD1
piu.xi/;

which is equivalent to the concavity of u. ut
This well-known result is quite surprising. It says that risk aversion, which is

a phenomenon intimately related to the perception of probability (the underlying
uncertainty), is entirely modelled by the utility function, which is supposed to
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model the perception of wealth! This suggests that the expected utility model is
not sufficiently sophisticated in this respect. The next section shows an example
where expected utility is unable to model a situation of risk aversion.

5.2.4 The Allais Paradox

In 1953, Maurice Allais8 presented a choice problem among lotteries, where most
people violate expected utility [8]. The version presented here is with two outcomes
(Allais also presented a formulation with three outcomes. Many other variations can
be found in [203]).

Consider the following two lotteries p; q:

p :
1

3000 q :

0.8

0.2

4000

0

p being a sure lottery, most people have the preference p  q, because a sure
substantial gain is preferable to a risky gamble, where the surplus of $1000 is not
considered as enough attractive compared to the possibility of a zero gain. In a
second step, the following choice is proposed:

p :

0.05

0.95

3000

0

q :

0.04

0.96

4000

0

Here, most people prefer q0 to p0, because the probability of winning $4000 with q0
is almost the same as the probability of winning $3000 with p0. However, a decision
maker following expected utility should prefer on the contrary p0 to q0 if the previous
preference was p  q. Indeed,

p  q , EU.p/ > EU.q/

8Maurice Félix Charles Allais (Paris, 1911 – Saint-Cloud, 2010) is a French economist, famous for
his contributions to decision theory, behavioral economics and monetary policy. He received the
Nobel Prize in economics in 1988.
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, u.3000/ > 0:2u.0/C 0:8u.4000/

, 0:05u.3000/ > 0:01u.0/C 0:04u.4000/

, 0:05u.3000/C 0:95u.0/ > 0:96u.0/C 0:04u.4000/

, EU.p0/ > EU.q0/

, p0  q0:

Hence, most people violates expected utility in this experiment.

5.2.5 Transforming Probabilities

The reason of the failure of expected utility in the Allais paradox lies in the
misrepresentation of risk aversion. Expected utility can represent risk aversion
only through the concavity of the utility function, but obviously risk aversion has
little to do with the perception of wealth. This is why psychologists in the 50s
(for example Edwards [123]) have developed the idea to transform probabilities
instead of transforming wealth to represent this phenomenon. We will see that a
transformation of probability done in a naive way leads to the violation of stochastic
dominance, which makes it inapplicable to decision making. Our exposition follows
Wakker [336] (also in [339, Sects. 5.2 and 5.3]).

Consider a lottery p D .p1; x1I : : : ; I pn; xn/. The idea of Edwards [123] to
represent risk aversion is to apply a distortion function ' to the probability
distribution, i.e., an increasing bijection on Œ0; 1�, instead of applying a utility
function on the outcomes. Hence the numerical representation of preference would
be the function

V.p/ D
nX

iD1
xi'.pi/ .p 2 L/: (5.6)

If ' is not the identity function, there necessarily exist p0; p00 2 Œ0; 1� such that

'.p0 C p00/ ¤ '.p0/C '.p00/:

Suppose for example that '.p0 C p00/ > '.p0/ C '.p00/ (a similar argument can be
built if the reverse inequality holds). Consider a lottery p D .p1; x1I : : : I pn; xn/, with
x1 < x2 < � � � < xn, and pn�1 D p0, pn D p00. The quantity V.p/ is the yellow area
on Fig. 5.6(a). Let us diminish the quantity xn gradually till reaching xn�1. When
xn remains strictly greater than xn�1 (Fig. 5.6(b), (c)), nothing special happens: the
yellow area gradually diminishes, and so does V.p/. When xn hits xn�1 (Fig. 5.6(d)),
'.p0/C'.p00/ is replaced by '.p0Cp00/, which creates a sudden augmentation of area,
hence V.p/ increases although one of the outcomes of the lottery has decreased.
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This is a violation of stochastic dominance, making the principle of probability
transformation untenable for decision making.

5.2.6 Rank Dependent Utility

The reason of the failure is due to the fact that the probabilities pi are transformed
individually. If partial sums pn, pn C pn�1, pn C pn�1 C pn�2, etc., are transformed
instead, the problem disappears, as it becomes clear from Fig. 5.7. Note in addition
that this amounts to considering the transformation of the decumulative distribution
function Gp by ' instead of the transformation of p itself. The lottery is then
evaluated by the area under ' ı Gp:

V.p/ D '.p1 C � � � C pn/
„ ƒ‚ …

D1
x1 C '.p2 C � � � C pn/.x2 � x1/C � � �

C '.pn�1 C pn/.xn�1 � xn�2/C '.pn/.xn � xn�1/ (5.7)

D �
1 � '.p2 C � � � C pn/

�
x1 C �

'.p2 C � � � C pn/ � '.p3 C � � � C pn/
�
x2

C � � � C '.pn/xn: (5.8)

Since the problem of preserving stochastic dominance with transforming proba-
bilities has been resolved, we can reintroduce utility functions in our model and get
a general expression for any lottery .p1; x1I : : : I pn; xn/ 2 L. Recall that we assumed
x1 < � � � < xn. In the general case, let us take a permutation � on f1; : : : ; ng
such that u.x�.1// 6 � � � 6 u.x�.n// where u is a given increasing and continuous
utility function, and denote by P the probability measure on .f1; : : : ; ng; 2f1;:::;ng/
associated to the distribution p1; : : : ; pn, given by P.A/ D P

i2A pi for any A �
f1; : : : ; ng. A rewriting of (5.7) and (5.8) with the above notation leads to

V.p/ D
nX

iD1

�
u.x�.i// � u.x�.i�1//

�
' ı P.f�.i/; : : : ; �.n/g/ (5.9)

D
nX

iD1
u.x�.i//

�
' ı P.f�.i/; : : : ; �.n/g/� ' ı P.f�.i C 1/; : : : ; �.n/g/�;

(5.10)

with u.x�.0// D 0. A comparison with (4.26) and (4.27) letting 	 D ' ı P clearly
shows that

V.p/ D
Z

.u.x1/; : : : ; u.xn// d.' ı P/; (5.11)
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x4x3x2x1

ϕ(p )

ϕ(p )

ϕ(p2)

ϕ(p1)

(a)

x4x3x2x1

ϕ(p )

ϕ(p )

ϕ(p2)

ϕ(p1)

(b)

x4x3x2x1

ϕ(p )

ϕ(p )

ϕ(p2)

ϕ(p1)

(c)

x3x4
x2x1

ϕ(p + p ) ϕ(p ) + ϕ(p )

ϕ(p2)

ϕ(p1)

(d)

Fig. 5.6 (a) Computation of V.p/ with a distortion function '; n D 4: The yellow area represents
V.p/. (b) x4 has diminished: the blue hatched area is removed from V.p/. (c) Further diminution
of x4: another blue hatched area is removed from V.p/. (d) x4 hits x3: another small blue area is
removed but the red crosshatched area appears because of the difference '.p0Cp00/�'.p0/�'.p00/

i.e., V.p/ is the Choquet integral of the utility of the outcomes of the lottery w.r.t.
the distorted probability ' ı P.
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x4x3x2x1

ϕ(p1 + · · · + p4) = 1

ϕ(p2 + p3 + p4)

ϕ(p3 + p4)

ϕ(p4)

Fig. 5.7 The RDU model: transforming partial sums of probabilities (Gp) instead of probabili-
ties ( p)

The model given in (5.11), and extended to lotteries with negative outcomes
through the usual (asymmetric) definition of the Choquet integral (4.13), is called
the rank dependent utility model, abbreviated by RDU, and we use from now on the
notation RDU.p/ instead of V.p/. Its name comes from the fact that a reordering is
necessary when computing RDU.p/. It was proposed and studied by Quiggin [270],
under the name “anticipated utility.” It generalizes the model of Yaari [350] where
u is the identity function.

Equation (5.10) is considered to be the standard form of the RDU model, where
we next replace P.f�.i/; : : : ; �.n/g/ by the simpler p�.i/C� � �Cp�.n/. It has the form
of a weighted average of the utility of the outcomes, and the differences

w�i D '.p�.i/ C � � � C p�.n//� '.p�.iC1/ C � � � C p�.n// .i D 1; : : : ; n/

are called the decision weights.

Example 5.10 (Allais paradox solved) Let us see how RDU can solve the Allais
paradox, and take for simplicity u to be the identity function. This will show in
addition that risk aversion can be accommodated without using utility functions.
The preference p  q translates into

3000 > 4000'.0:8/

hence we should have 0 < '.0:8/ < 0:75. Next, the preference q0  p0 imposes

3000'.0:05/ < 4000'.0:04/
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i.e., '.0:04/='.0:05/ 2 �0:75; 1Œ. This is achieved by taking, e.g., '.0:05/ D 0:05

and '.0:04/ D 0:04. Þ

Let us examine how the distortion function ' can model optimism and pessimism
(which can be seen as a form of risk aversion or risk seeking), depending on whether
it is concave or convex. If ' is convex (like '.p/ D p2), the decision weights
are decreasing with i, and therefore emphasis is put on the outcomes with low
values, which expresses pessimism or risk aversion. On the contrary, if ' is concave
(like '.p/ D p

p), the decision weights are increasing with i, showing optimism
(Fig. 5.8).

10

1

p4 p3 + p4
p2 + p3 + p4

w4

w3

w2

w1

10

1

p4 p3 + p4
p2 + p3 + p4

w4

w3

w2

w1

Fig. 5.8 Convex distortion function ' (left) and concave distortion function (right), with n D 4.
The permutation � is the identity function and is therefore omitted

Remark 5.11

(i) The question of studying risk aversion in the RDU model, and how to define it
in a proper way, is in fact fairly complex. If we keep our definition of Sect. 5.2.3,
that is, risk averse DMs’ prefer to any lottery its expected value, while imposing
u to be the identity function (i.e., Yaari’s model), we immediately see that a
necessary and sufficient condition for risk aversion is that, for any lottery p D
.p1; x1I : : : I pn; xn/ with x1 6 � � � 6 xn,

E.p/  p , RDU.E.p// > RDU.p/

,
nX

iD1
xipi >

nX

iD1
xi
�
'.pi C � � � C pn/� '.piC1 C � � � C pn/

�
:

In particular, taking binary lotteries with n D 2 and x1 D 0, the last equivalence
becomes

p2 > '.p2/
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for any p2 2 Œ0; 1�. In other words, the distortion function should be below the
diagonal, which is the case for any convex function. Chateauneuf and Cohen
[47] have proved that this remains true for any differentiable u. They showed
also other properties of ' and u implied by risk aversion. In particular, it is
possible to have risk aversion with a convex function u (which tends to induce
risk seeking behavior), provided that ' is sufficiently pessimistic in the above
sense.

Chew et al. [51] proposed a stronger definition of risk aversion (being
aversion to mean-preserving spreads: for a fixed mean, lotteries with narrow
spread are preferred), which leads to the following result: (strong) risk aversion
is equivalent to having a concave utility and a convex probability distortion.

(ii) Experiments have shown that the distortion function that most people exhibit is
neither concave nor convex, but is a combination of both, the inverse S-shape
function (Fig. 5.9). The shape of this function can be explained in two ways.

10

1

p

ϕ(p)

10

1

p

ϕ(p)

Fig. 5.9 Inverse S-shape distortion function (left) and its extreme case (right)

First, it shows the phenomenon of likelihood insensitivity, that is, people have
only a rough perception of uncertainty, which extreme case can be seen in
Fig. 5.9 (right). There, an individual is only able to distinguish between “sure
to happen,” “sure not to happen” and “don’t know.” In general, people have less
sensitivity for events to be more or less certain (the flat region in the middle of
the left curve), and are overly sensitive to change from impossible to possible
(near p D 0) and from possible to certain (near p D 1).

Another interpretation can be done in terms of pessimism and optimism,
recalling our discussion above (Fig. 5.8). Indeed, the inverse S-shape curve is
a combination of a concave function (showing optimism) for low probabilities
and a convex function (showing pessimism) for high probabilities. The lower
part corresponds to favorable outcomes: best outcomes are overweighted
(possibility effect: the probability to get the best outcome is small, but it
is possible), and so are also worst outcomes in the upper part of the curve
(certainty effect: the worst outcome represents what the DM is guaranteed to
get at least). The inverse S-shape function then explains why an individual
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can gamble, hoping to win big prizes with very low probability, and at the
same time can take insurance against very unfavorable outcomes, although quite
improbable. We refer the readers to Wakker [339, Chap. 7] and Takemura [325,
Chap. 8, Sect. 3] for a full discussion of this topic.

}
Let us give a behavioral foundation of RDU. To this end we introduce the

following property. For outcomes ˛; ˇ; �; ı, we say that they are related by
rank tradeoff indifference if there exist a probability p > 0, consequences
x2; : : : ; xn and y2; : : : ; yn, probabilities p2; : : : ; pn and q2; : : : ; qn such that the
lotteries p˛ D .p; ˛I p2; x2I : : : I pn; xn/, qˇ D .p; ˇI q2; y2I : : : I qn; yn/, p� D
.p; � I p2; x2I : : : I pn; xn/ and qı D .p; ıI q2; y2I : : : I qn; yn/ satisfy

p˛ � qˇ and p� � qı;

and ˛; ˇ; �; ı are such that the probability to be better are the same in their respective
lotteries; i.e.,

Prob.outcome of p˛ > ˛/ D Prob.outcome of qˇ > ˇ/

D Prob.outcome of p� > �/ D Prob.outcome of qı > ı/:

We denote this relation as .˛; ˇ/ �t
r .�; ı/, where t, r stand for “tradeoff” and “rank,”

respectively. It is straightforward to check that under RDU,

.˛; ˇ/ �t
r .�; ı/ ) u.˛/� u.ˇ/ D u.�/� u.ı/;

where u is the utility function of the RDU model. Now, we say that a preference rela-
tion < satisfies rank tradeoff consistency if whenever .˛; ˇ/ �t

r .�; ı/, improving
any outcome among ˛; ˇ; �; ı breaks that relationship.

Moreover, we say that < is continuous if for any n 2 N, for any probability
distribution .p1; : : : ; pn/, the sets of n-dim vectors of outcomes

f.x1; : : : ; xn/ W .p1; x1I : : : I pn; xn/ < .p1; y1I : : : I pn; yn/g and

f.x1; : : : ; xn/ W .p1; x1I : : : I pn; xn/ 4 .p1; y1I : : : I pn; yn/g

are closed subsets of Rn for every .y1; : : : ; yn/ 2 R
n.

Theorem 5.12 (Axiomatization of RDU) (Wakker [339, Theorem 6.5.6]) Let <
be a binary relation on L. Under the above structural assumptions for risk, the
following two propositions are equivalent.

(i) < is complete and transitive, is continuous, and satisfies strict stochastic
dominance and rank tradeoff consistency;
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(ii) There exist an increasing and continuous utility function u (unique up to a
positive affine transformation) and a distortion function ' such that RDU given
by (5.11) represents <.

5.2.7 Prospect Theory

If RDU provides a fairly flexible model of decision under risk, able to represent
risk aversion in a proper way, still some drawbacks exist, in particular related to
what is called reference dependence, loss aversion, and reflection effect. It has
been observed that people evaluate acts according to some reference level usually
corresponding to the status quo; i.e., what describes their present situation. For
example, the same object (like an apartment, a car, etc.) is felt differently if it is
better or worse than the present apartment or car that the person possesses. In the
first case, the new apartment is considered to be a gain, while it is felt as a loss in the
second case. In short, the perception of outcomes is no longer absolute but relative to
the present state. In addition, it has been observed that people exhibit loss aversion:
they are more sensitive to losses than to gains. For example, a person earning $1000
some day and then losing $1000 the day after feels much more miserable than
the status quo (no earning, no loss). Also, it has been observed that, by a kind of
reflection phenomenon, people become risk seeking with losses.9 This can be seen
in the experiment described on Fig. 5.10.

1
50

0.5

0.5

100

0

1
−50 ≺

0.5

0.5

0

−100

Fig. 5.10 Most people are risk averse for gains and exhibit the preference shown on the left. On
the right figure where the outcomes become negative, attitude for risk is reversed

These observations have lead Kahneman and Tversky to introduce prospect
theory [203, 329]. The original 1979 prospect theory in [203] was, roughly
speaking, like expected utility where reference levels and loss aversion have been
incorporated. The 1992 version (called “cumulative prospect theory”) corrected the
mathematical flaws of the first one and incorporated rank-dependency. We consider
only the latter in this section, and call it simply “prospect theory” (abbreviated by
PT), as it is the usage now.

9Although it seems that for losses, the behavior is closer to expected value maximization; see
Wakker [339, Sect. 9.5] and Takemura [325, Chap. 8, Sect. 1] for more details.
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We suppose for ease of notation that the reference point (status quo) is the
outcome 0. The evaluation of lotteries under cumulative prospect theory is done
by the real-valued function PT on L, defined as follows. For any lottery p 2 L, list
its outcomes in increasing order and number them as follows:

x1 6 � � � 6 xm < 0 6 xmC1 6 � � � 6 xmCn:

The probabilities of the outcomes are denoted accordingly: p1; : : : ; pm,
pmC1; : : : ; pmCn. Let u be a strictly increasing and continuous utility function,
with u.0/ D 0, and two distortion functions 'C; '�. The evaluation of p by PT is:

PT.p/ D
mX

iD1
u.xi/

�
'�.p1 C � � � C pi/ � '�.p1 C � � � C pi�1/

�C

mCnX

iDmC1
u.xi/

�
'C.pi C � � � C pmCn/� 'C.piC1 C � � � C pmCn/

�
: (5.12)

Note that RDU is recovered when only nonnegative outcomes are considered. In
addition, the above expression can be expressed by the difference of two Choquet
integrals:

PT.p/ D
Z

.0; : : : ; 0
„ ƒ‚ …

m

; u.xmC1/; : : : ; u.xmCn// d.'C ı P/

�
Z

.�u.x1/; : : : ;�u.xm/; 0; : : : ; 0„ ƒ‚ …
n

/ d.'� ı P/; (5.13)

where the .m C n/-tuples represent the integrand. Note that if 'C D '� D
', the above expression is nothing but the symmetric Choquet integral of
.u.x1/; : : : ; u.xm/; u.xmC1/; : : : ; u.xmCn// w.r.t. the capacity ' ı P [see (4.10); also
compare (5.12) with (4.35)].

Remark 5.13 Most frequently used utility functions are concave for the positive part
and convex for the negative part, with a steepest slope at the origin for the negative
part, so as to represent loss aversion. A typical example is to take u.x/ D x˛ for
x > 0 and u.x/ D ��.�x/˛ , with 0 < ˛ < 1 and � > 1 (Fig. 5.11). On the
other hand, the two distortion functions are usually inverse-S-shaped and somewhat
different. }

The following result shows that the PT model satisfies the basic rationality
requirements.
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x

u(x)

Fig. 5.11 Example of utility function for PT (� D 2, ˛ D 0:5)

Theorem 5.14 Under the above assumptions for risk, for any increasing con-
tinuous utility function, the PT model satisfies monotonicity and strict stochastic
dominance.

Proof Monotonicity corresponds to monotonicity w.r.t integrand for integrals, and
therefore it holds because the latter property holds for the symmetric Choquet
integral (see Theorem 4.24(vi) and Remark 4.25. The fact that the positive and
negative parts use different capacities does not change the result).

As for stochastic dominance, consider two lotteries p; p0 with Gp0 > Gp. Let us
separate the lotteries into their positive and negative parts as in (5.13); i.e.,

PT.p/ D PT.pC/ � PT.p�/:

Since the positive part satisfies stochastic dominance (it is merely the Choquet
integral for nonnegative functions), it remains to prove that PT..p0/�/ 6 PT.p�/. It
is enough to show that

'� ı P.u�.x/ > ˛/ > '� ı P0.u�.x/ > ˛/ (5.14)

for every ˛ > 0, and where u� is the negative part of u [see (4.9)]. We have for
every ˛ > 0:

P0.x > �˛/ > P.x > �˛/
, P0.x 6 �˛/ 6 P.x 6 �˛/
, P0�u.x/ 6 u.˛/

�
6 P

�
u.x/ 6 u.�˛/�

, P0.u�.x/ > ˛0/ 6 P.u�.x/ > ˛0/

, '� ı P0.u�.x/ > ˛0/ 6 '� ı P.u�.x/ > ˛0/

using increasingness of u, and letting ˛0 D �u.�˛/ > 0. Now, the above inequality
holds for any ˛0 2 ran u�, which is an interval of RC by continuity of u�, whose
closure contains 0. For positive values outside the range the equality holds trivially,
hence (5.14) holds for any ˛ > 0. ut
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5.3 Decision Under Uncertainty

Recall that in decision under uncertainty, the probability measure on S is unknown.
Therefore, the determination of models for uncertainty requires more effort because
both the utility function and the probability measure need to be determined, the
latter being called “subjective” because it depends on the decision maker.

We return to our notation of acts as mappings f ; g; : : : from S to the set of
consequences, supposed to be R most of the time for simplicity. We summarize
our assumptions for this section (same as in Wakker [339, Chap. 4]).

(Structural assumptions for uncertainty)

(i) Acts take finitely many values, say x1; : : : ; xn, and therefore each act f
induces a partition of S into events f �1.xi/ for all i;

(ii) The domain of the preference relation < is the set of such acts, denoted
by F; < is nondegenerate.

Before entering the main topic, we address the case where the utility function is
known, or is supposed to be the identity function. Then expected utility reduces to
expected value. An important concept underlying the expected value criterion is the
Dutch book argument.

5.3.1 The Expected Value Criterion and the Dutch Book
Argument

(This section is based on Wakker [339, Sects. 1.5 and 1.6].) We suppose that either
the utility function is known, or is considered to be the identity function, so that
we directly work with consequences, supposed to be amounts of money. Then the
expected utility criterion becomes the expected value criterion, denoted by EV:

EV. f / D
nX

iD1
P.Ei/xi (5.15)

where P is a (subjective) probability measure on S, x1; : : : ; xn are all possible
outcomes of f (i.e., its range), and Ei D fs 2 S W f .s/ D xig.

We say that < on F is additive if for all acts f ; g; h,

f < g ) f C h < g C h:

A certainty equivalent to an act f is a real number denoted by CE. f / such that the
constant act CE. f / is indifferent to f : f � CE. f /.

A Dutch book consists of preferences f i < gi, i D 1; : : : ;m, such that the
preferred acts f i, when combined, always yield less than the nonpreferred acts gi.
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That is,

mX

iD1
f i.s/ <

mX

iD1
gi.s/ .s 2 S/:

In words, a Dutch book is a sequence of bets yielding a sure loss at the end. It is
known in finance under the name arbitrage.

Example 5.15 (Wakker [339, Example 1.6.2]) Suppose you are a vendor on the
beach. Three states of nature are considered: no rain, some rain, and all rain. Your
profit depends on the product you are selling (ice creams, hot dogs, umbrellas,
sun glasses, etc.) and the weather. The following table gives the profit for different
acts (products) f 1; f 2; f 3; g1; g2; g3. Suppose you have the following preference: you

Act No rain Some rain All rain

f 1 0 100 100

f 2 100 0 100

f 3 100 100 0

g1 300 0 0

g2 0 300 0

g3 0 0 300

prefer acts yielding a positive profit for most of the three states of nature (so that
any f i is preferred to any gj). Then a Dutch book can be made. Indeed,

f 1.s/C f 2.s/C f 3.s/ D 200 < 300 D g1.s/C g2.s/C g3.s/ .s 2 S/:

The following fundamental result shows that, essentially, a decision maker whose
preference is not representable by expected value, can be made victim of a Dutch
book.

Theorem 5.16 (De Finetti’s Dutch book argument) (Wakker [339, Theo-
rem 1.6.1]) Let < be a binary relation on F. Under the above structural assumptions
for uncertainty, the following propositions are equivalent.

(i) < is complete, transitive, each act has a certainty equivalent, and no Dutch
book is possible;

(ii) < is complete, transitive, additive, monotone, and each act has a certainty
equivalent;

(iii) There exists a unique probability measure P on S such that EV given by (5.15)
represents <.

Proof (ii))(i) Consider acts f 1; : : : ; f m; g1; : : : ; gm such that f i < gi for all i andP
i f i.s/ <

P
i gi.s/ for every s 2 S. By monotonicity, we get

P
i f i 
 P

i gi.
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By additivity, f 1 < g1 implies f 1 C f 2 < g1 C f 2. Now, f 2 < g2, hence by
additivity again g1 C f 2 < g1 C g2, which by transitivity yields f 1 C f 2 < g1 C g2.
Proceeding similarly, we eventually get

X

i

f i <
X

i

gi;

a contradiction.
(i))(ii) Let us first prove monotonicity, considering two acts f ; g. Suppose first

that f .s/ > g.s/ for every s. Then assuming g < f would constitute a Dutch book
with m D 1. Suppose then that f .s/ > g.s/ for every s 2 S, and g  f . Then
CE. f / < CE.g/, and on the other hand

CE. f / < f

g < CE.g/:

Since no Dutch book is possible, there must exist a state s such that

CE. f /C g.s/ > f .s/C CE.g/;

hence 0 > g.s/ � f .s/ > CE.g/� CE. f / > 0, a contradiction.
Let us prove that CE is additive. Suppose on the contrary that CE. f C g/ >

CE. f /C CE.g/ for some acts f ; g. We have

CE. f C g/ 4 f C g

f 4 CE. f /

g 4 CE.g/:

Since no Dutch book is possible, there must exist a state s such that

CE. f C g/C f .s/C g.s/ 6 f .s/C g.s/C CE. f /C CE.g/;

a contradiction. Doing similarly by reversing inequalities, one concludes that only
CE. f C g/ D CE. f /C CE.g/ is possible.

Based on this, we prove additivity of <. Suppose f < g and f Ch 
 gCh for some
acts f ; g; h. Then CE. f Ch/ < CE.gCh/, hence CE. f /CCE.h/ < CE.g/CCE.h/,
a contradiction.

(iii))(ii) Obvious.
(ii))(iii) Since CE represents preference, we have to show that CE is the

expected value w.r.t. some probability measure P on S. First, we prove that CE is
additive. By f � CE. f / and g � CE.g/ for any two acts f ; g, we get using additivity
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and transitivity

f C g � CE. f /C CE.g/;

hence CE. f C g/ � CE. f /C CE.g/, i.e., CE. f C g/ D CE. f /C CE.g/.
Let us define P.E/ D CE.1E0/, the certainty equivalent of the act with outcome

1 on E and 0 otherwise, for every event E. Let us prove that P is a probability
measure. We have P.S/ D CE.1/ D 1, P.¿/ D CE.0/ D 0, and P.E/ > 0 for any
E by monotonicity. Now, take disjoint events A;B. Then, using additivity of CE,

P.A [ B/ D CE.1A[B0/ D CE.1A0/C CE.1B0/ D P.A/C P.B/:

It remains to prove that CE.�E0/ D �P.E/ for all event E and all � 2 R. For � > 0,
it suffices to use the classical trick starting with � 2 N, then � 2 QC and then
� 2 RC (see Proof of Theorem 4.51). It remains to prove the property for � < 0.
Observe that

0 D CE.0/ D CE. f � f / D CE. f /C CE.�f /;

hence CE.�f / D �CE. f /, and the desired property follows. ut

5.3.2 The Expected Utility Criterion

Expected utility is defined as for decision under risk. Using the above notation,
expected utility holds if an act f is evaluated by

EU. f / D
nX

iD1
u.xi/P.Ei/ (5.16)

where u is a utility function (supposed to be increasing when outcomes are monetary
values), P is a (subjective) probability measure, and Ei D f �1.xi/ for i D 1; : : : ; n.
Since P is subjective, the model is often called subjective expected utility theory and
abbreviated by SEU.

The first behavioral foundation of expected utility for decision under uncertainty
was given by Leonard Savage10 [284]. His characterization of expected utility
requires S to be infinite, and is based on seven axioms. A complete description of this
characterization is fairly complicated, and because it is well known and can be found
in many references, we do not detail it here. We recommend to the interested readers,

10Leonard Jimmie Savage (1917, Detroit – 1971, New Haven) (born Leonard Ogashevitz) is an
American mathematician and statistician. His most famous work is his 1954 book “Foundations of
Statistics” giving the basis of subjective expected utility theory.
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e.g., the excellent description in Gilboa [153, Chap. 10]. Nevertheless, there is an
axiom proposed by Savage that cannot be ignored: his famous P2 axiom, referred to
as the sure-thing principle. It says the following: for any acts f ; g; h; h0 2 F, for any
event E � S,

fEh < gEh , fEh0 < gEh0: (5.17)

In words, the preference between two acts that are identical for some event (here
S n E) should not depend on that common part.

Let us give a simpler characterization, similar to the one of RDU given in
Sect. 5.2.6. We consider compound acts that are constant on some event E, denoted
by ˛E f with ˛ 2 R and f 2 F (as a simplification of the more correct .˛1S/E f ).
We say that .˛; ˇ/ 2 R

2 and .�; ı/ 2 R
2 are related by tradeoff indifference if there

exist acts f ; g 2 F, and a nonnull event E � S such that

˛E f � ˇEg and �E f � ıEg:

We denote this by .˛; ˇ/ �t .�; ı/. In words, ˛ instead of ˇ, when E occurs, offsets
f instead of g on S n E, and so does � instead of ı. Now, a preference relation <
satisfies tradeoff consistency if whenever .˛; ˇ/ �t .�; ı/, improving any outcome
among ˛; ˇ; �; ı breaks that relationship.

Continuity of < is defined as for decision under risk: < is continuous if for every
n 2 N and every partition .E1; : : : ;En/ of S, the sets of n-dim vectors of outcomes

f.x1; : : : ; xn/ W .E1; x1I : : : I En; xn/ < .E1; y1I : : : I En; yn/g and

f.x1; : : : ; xn/ W .E1; x1I : : : I En; xn/ 4 .E1; y1I : : : I En; yn/g

are closed subsets of Rn for every .y1; : : : ; yn/ 2 R
n.

Theorem 5.17 (Axiomatization of EU for uncertainty) (Köbberling and Wakker
[214], Wakker [339, Theorem 4.6.4]) Let < be a binary relation on F. Under the
above structural assumptions for uncertainty, the following two propositions are
equivalent.

(i) < is complete and transitive, is continuous, and satisfies monotonicity and
tradeoff consistency;

(ii) There exist a continuous and increasing utility function u (unique up to a
positive affine transformation) and a unique probability measure P on S such
that EU given by (5.16) represents <.
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5.3.3 The Ellsberg Paradox

Ellsberg [124] proposed the following betting situation. Consider an urn containing
90 balls, which could be red (R), yellow (Y) or black (B). We know that the urn
contains 30 red balls, but for the remaining 60 balls, it is only known that they are
yellow or black, in an unknown proportion (there could be 30 yellow and 30 black
balls, as well as 0 yellow and 60 black balls, etc.).

A ball is picked at random, and the following bets are proposed: betting on red, or
betting on black. If the color of the picked ball corresponds, you get $100, otherwise
nothing. Then a second choice is offered: to bet on [red or yellow] or on [black or
yellow], and again you get $100 if the color of the picked ball matches your choice,
otherwise nothing.

Experimental results show that the majority of people prefer to bet on red in
the first step, because they are sure that 1=3 of the balls are red, while there is no
guarantee about black balls (there could be no black ball at all). In the second step,
most people prefer to bet on [black or yellow] for the same reason: 2=3 of the balls
are black or yellow, while for [red or yellow], only 1=3 is guaranteed. Moreover, the
majority of people follow the above choices in both steps. We show below that such
a behavior cannot be explained by expected utility.

Let us formalize the problem in terms of states of nature and acts. The states of
nature are the possible colors of the picked ball, i.e., S D fR;Y;Bg, and the acts are
the four possible bets. We summarize the outcomes of the different acts in the table
below. We immediately see from the table that the preferences f1  f2 and f4  f3

Act Red (R) Yellow (Y) Black (B)

f1: bet on R 100 0 0

f2: bet on B 0 0 100

f3: bet on R or Y 100 100 0

f4: bet on B or Y 0 100 100

violate the sure-thing principle. Indeed, acts f1 and f2 coincide on Y, hence by the
sure-thing principle, only R and B matter. But since f3; f4 are identical to f1; f2 on
R, B, the choice f1  f2 forces f3  f4, which is not the observed behavior. The
sure-thing principle being implied by expected utility, it follows that most people
are not expected utility maximizers.

Even worse, the RDU model cannot explain this choice either, whatever the
probability measure P is chosen on S or the distortion function ' is. Indeed, on
the one hand, u denoting the utility function,

f1  f2 , u.100/'.P.fRg/ > u.100/'.P.fBg/
, '.P.fRg/ > '.P.fBg//
, P.fRg/ > P.fBg/; (5.18)



5.3 Decision Under Uncertainty 309

by increasingness of '. On the other hand,

f4  f3 , u.100/'.P.fY;Bg/ > u.100/'.P.fR;Yg/
, '.P.fY;Bg/ > '.P.fR;Yg// (5.19)

, '.1 � P.fRg// > '.1 � P.fBg//
, P.fRg/ < P.fBg/: (5.20)

Clearly, (5.18) and (5.20) are contradictory.
More generally, no model assuming probabilistic sophistication11 can explain

this choice. Indeed, if one prefers f1 to f2, this is because there might be fewer
black balls than red balls [i.e., P.B/ < P.R/]. Based on this assumption, one should
infer that there might be more balls being red or yellow than balls being black or
yellow (P.R;Y/ > P.B;Y/); i.e., f3 should be preferred to f4. But this is precisely
not the choice of the majority of people. In the rest of this chapter, we provide two
explanations of this decision behavior.

A similar phenomenon happens with the home bias (see Wakker [339, Exam-
ple 10.1.2]). An American investor has to choose between gaining $1000 if the
Dow Jones index goes up tomorrow (event denoted by DJC), or gaining $1000 if
the Nikkei index goes up tomorrow (NKC). Being American, he prefers the former
act. Suppose now that the choice is given instead between gaining $1000 if the
Dow Jones index goes down (DJ�) or gaining the same amount if the Nikkei index
goes down (NK�). Again, the former is preferred (home bias). However, as in the
Ellsberg paradox, these choices cannot be explained by probabilistic sophistication
because the first choice entails P.DJC/ > P.NKC/, while the second entails
P.DJ�/ > P.NK�/, which is impossible.

5.3.4 Choquet Expected Utility

The great discovery of the Ellsberg paradox is that most people are not proba-
bilistically sophisticated, at least in the kind of situation depicted in Sect. 5.3.3.
A natural conclusion is that their representation of uncertainty is not based on
probability measures (we will return to this conclusion in Sect. 5.3.5). The essence
of probability measures being the additivity property, we have to look for measures
of uncertainty that are not additive, and the class of (normalized) capacities provides
a large class of such measures (see Chap. 2). Indeed, an examination of (5.18) and
(5.20) reveals that additivity is the very cause of the contradiction in the Ellsberg

11Probabilistic sophistication says that the uncertainty of events can be quantified by a prob-
ability measure, so that acts .E1; x1I : : : I En; xn/ can be replaced by their equivalent lotteries
.p1; x1I : : : I pn; xn/. It does not say, however, that acts should be evaluated by expected utility (but
could be for example by RDU, supposing a distortion of probability).
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paradox. If one stops the computation at (5.19), then the contradiction disappears.
Using a capacity 	 for representing the uncertainty on S, we obtain

f1  f2 ,	.fRg/ > 	.fBg/
f4  f3 ,	.fY;Bg/ > 	.fR;Yg/:

One could take for example the capacity given in Table 5.1 to satisfy these
inequalities. Note that this capacity is supermodular. We will return to this capacity

Event E R Y B R,Y R,B Y,B R,Y,B

	.E/ 1=3 0 0 1=3 1=3 2=3 1

Table 5.1 Definition of a capacity 	 solving the Ellsberg
paradox

in Sect. 5.3.5.
Replacing probability measures by capacities forces to reconsider the computa-

tion of the expected value of an act by using the Choquet integral, leading to what
is usually called Choquet expected utility. The valuation of an act f is then given by

CEU. f / D
Z

u. f / d	 (5.21)

where u is a utility function (supposed to be increasing when the outcomes are
monetary values) and 	 a capacity on S. This can be seen as a generalization of the
RDU model (with 	 D ' ı P), and for this reason this model is also called RDU
under uncertainty.

We give a behavioral foundation of CEU, which is very close to the one given
for expected utility. The only condition to change is tradeoff consistency, where
similarly to the axiomatization of RDU we need to introduce rank dependence in it.

Consider ˛; ˇ; �; ı 2 R related by tradeoff indifference (Sect. 5.3.2); i.e.,
.˛; ˇ/ �t .�; ı/, meaning that there exist an event E and acts f ; g 2 F such that
˛E f � ˇEg and �E f � ıEg. We say that ˛; ˇ; �; ı 2 R are related by rank tradeoff
indifference, denoted by .˛; ˇ/ �t

r .�; ı/, if in addition, the ranks of ˛; ˇ; �; ı
are the same in their respective acts, that is, letting x1 < x2 < � � � < xn and
y1 < y2 < � � � < ym be the outcomes of f and g respectively,

x1 < � � � < xr 6 ˛ 6 xrC1 < � � � < xn; y1 < � � � < yr 6 ˇ 6 yrC1 < � � � < ym;

x1 < � � � < xr 6 � 6 xrC1 < � � � < xn; y1 < � � � < yr 6 ı 6 yrC1 < � � � < ym;

(5.22)

for some r, and the events pertaining to xi and yi are the same (i.e., f �1.xi/ D
g�1.yi/) for i D r C 1; : : : ; n (compare with the corresponding definition for risk
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in Sect. 5.2.6). As with RDU, it is straightforward to check that under CEU,

.˛; ˇ/ �t
r .�; ı/ ) u.˛/� u.ˇ/ D u.�/� u.ı/:

Now, a preference relation < satisfies rank tradeoff consistency if whenever
.˛; ˇ/ �t

r .�; ı/, improving any outcome among ˛; ˇ; �; ı breaks that relationship.

Theorem 5.18 (Axiomatization of CEU) (Köbberling and Wakker [214], Wakker
[339, Theorem 10.5.6]). Let < be a binary relation on F. Under the above structural
assumptions for uncertainty, the following two propositions are equivalent.

(i) < is complete and transitive, is continuous, and satisfies monotonicity and rank
tradeoff consistency;

(ii) There exist a continuous and increasing utility function u (unique up to a
positive affine transformation) and a unique capacity 	 on S such that CEU
given by (5.21) represents <.

Remark 5.19

(i) Schmeidler was the first to introduce and axiomatize Choquet expected utility
in his 1989 paper [287]. The way it was done is fairly different from what is
presented above. Schmeidler takes as basis the framework of Anscombe and
Aumann [9] for subjective expected utility, where the set of outcomes C is the
set of finite lotteries (our set L). The axiomatization of Anscombe and Aumann
for EU is very close to the one of Fishburn/von Neumann and Morgenstern
(given in Theorem 5.6) for expected utility under risk, using independence,
the Archimedean property and monotonicity. Then, in the axiomatization of
Schmeidler, the independence axiom is weakened, by requiring that indepen-
dence should hold only for comonotonic acts. Specifically, the axiom reads: for
all comonotonic acts f ; g; h and � 2 �0; 1Œ,

f  g ) �f C .1 � �/h  �g C .1 � �/h (5.23)

where acts f ; g; h are comonotonic if there exists a permutation � on S
(supposing S to be finite) such that

f .s�.1// < � � � < f .s�.n//

g.s�.1// < � � � < g.s�.n//

h.s�.1// < � � � < h.s�.n//:

In the above, < on consequences is induced by < on acts (Remark 5.4). The
comonotonicity property above is of course a direct generalization of the notion
of comonotonic functions (Definition 4.26).

(ii) The Choquet integral being characterized by comonotonic additivity (see The-
orem 4.51), it is not surprising that most of the axiomatizations of CEU come
from axiomatizations of EU where some axioms are restricted to comonotonic
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acts. The axiomatization of Schmeidler is a good example, others are the
axiomatization of Chew and Wakker [52] using the comonotonic sure-thing
principle, and the one of Gilboa [152] using a variant of the sure-thing principle.
Rank tradeoff consistency hides also some kind of comonotonicity, although in
a weaker sense, because when .˛; ˇ/ �t

r .�; ı/, the acts ˛E f ; ˇEg; �E f ; ıEg are
not necessarily comonotonic.

}
We present now a simplified model of the CEU type due to Chateauneuf [46],

where the utility function in (5.21) is the identity function. The setting in [46] is
more general than ours, because acts are measurable and bounded mappings from S
to R, where S is endowed with some �-algebra S. Let us still call F the set of such
acts.

The first axioms are basic requirements ensuring the existence of a numerical
representation of < with usual properties (monotonicity, continuity):

A1. < is complete and transitive;
A2. Continuity w.r.t. monotone uniform convergence:

Œ fn; f ; g 2 F; fn < g; fn #u f � ) f < g

Œ fn; f ; g 2 F; g < fn; fn "u f � ) g < f

A3. Monotonicity. For any � > 0,

f > g C �1S ) f  g:

The key axiom forcing the representation by the Choquet integral is:

A4. For all acts f ; g; h such that f and h are comonotonic, and g and h are
comonotonic,

f � g ) f C h � g C h:

Let us comment on the latter axiom. It says that the indifference between two acts
f ; g is kept when adding a new act h, provided the new act is comonotonic with them.
Adding a common act to two others without perturbing the preference is reminiscent
of the independence condition in the Fishburn/von Neumann and Morgenstern
axiomatic characterization of expected utility under risk, and the comonotonicity
condition that is required is as in the axiomatization of Schmeidler (Remark 5.19).
Now, adding two comonotonic acts f ; h yields an act f Ch that still has the same kind
of variation pattern, but with increasing amplitude. As a result, the “uncertainty” of
the act is not reduced, in the sense that the outcomes vary a lot depending on the state
of nature. On the other hand, if the two acts are not comonotonic, there exists some
region of S where the uncertainty is reduced, due to the fact that the acts f ; h have
opposite variation in this region. This is called a hedging effect. Since uncertainty is
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reduced for f C h, the decision maker could change his preference on f C h; g C h,
according to his attitude towards uncertainty. The following example illustrates this
point.

Example 5.20 Consider the following acts f ; g; h (letters on branches indicate
events).

f :

E

S \ E

2500

1500

g :

E

S \ E

1200

3000

h :

E

S \ E

1500

2500

Suppose f � g. Observe that h and g are comonotonic, but not h and f . It follows
that there is a reduction of uncertainty for the act f C h (i.e., it is closer to a constant
act; indeed it becomes a constant act), but not for g C h:

f + h :

E

S \ E

4000

4000

g + h :

E

S \ E

2700

5500

If the decision maker prefers constant acts to uncertain acts, the preference will be
f C h  g C h. Þ

Theorem 5.21 (Axiomatization of CEU without utility) (Chateauneuf [46]) Let
< be a binary relation on F (as defined in this section). The following two
propositions are equivalent.

(i) < satisfies axioms A1, A2, A3 and A4;
(ii) There exists a unique capacity 	 on S such that CEU given by (5.21)

represents <.

The proof follows from the result of Schmeidler (Theorem 5.18).
By modifying Axiom A4, it is possible to have a characterization of uncertainty

aversion by supermodularity of the capacity.

A4’. For all acts f ; g; h such that g and h are comonotonic,

f � g ) f C h < g C h:
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The axiom describes a situation where there is no hedging effect for g C h, but
there could be one for f C h, inducing a reduction of uncertainty. Then uncertainty
averse12 decision makers prefer f C h to g C h.

Theorem 5.22 (Characterization of uncertainty aversion) (Chateauneuf [46])
Let < be a binary relation on F (as defined in this section). The following two
propositions are equivalent.

(i) < satisfies axioms A1, A2, A3 and A4’;
(ii) There exists a unique supermodular capacity 	 on S such that CEU given by

(5.21) represents <.

The proof follows easily from the previous theorem and Theorem 4.35.

Remark 5.23

(i) Obviously, uncertainty seeking is characterized by submodularity.
(ii) Recall that in our solution of the Ellsberg paradox (see Table 5.1), the capacity

was convex, which tends to indicate that most people are uncertainty averse.
However, note that the conditions	.fRg/ > 	.fBg/ and	.fY;Bg/ > 	.fR;Yg/
do not force supermodularity. Indeed, changing 	.fBg/ from 0 to, e.g., 1=6
makes supermodularity to fail, while the conditions are still satisfied.

}
We end this section by returning to prospect theory (Sect. 5.2.7). In the same way

as CEU is a generalization of RDU, substituting distorted probability measures by
capacities, one can adapt Prospect Theory to the uncertainty framework, using two
capacities, one for losses and one for gains. This yields the following model:

PTU. f / D
Z

u. f C/ d	C �
Z

u. f �/ d	�: (5.24)

We do not elaborate on this point and refer the readers to Wakker [339, Chap. 12].

5.3.5 Ambiguity and Multiple Priors

Ambiguity refers to a situation where the probability of some events is not known
with precision, and for this reason one speaks also of imprecise probabilities (Walley
[341]). The Ellsberg paradox provides a nice example of it, and shows that most

12So far we have not defined this term, and we suggest to take Axiom A4’ as a definition of
uncertainty aversion. By inverting the inequality, one obtains uncertainty seeking. Schmeidler
[287] has defined uncertainty aversion in his Anscombe-Aumann framework as follows: if f � g,
then ˛f C .1 � ˛/g < g for every ˛ 2 Œ0; 1�. It turns out that, as in Theorem 5.22, uncertainty
aversion is equivalent to supermodularity of the capacity.
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people exhibit ambiguity aversion, because they prefer to bet on events whose
probability is exactly known (like “red” and “black or yellow”).

A natural modeling of a decision situation involving ambiguity is to consider a
set of probability measures, which could be compatible or coherent with the avail-
able information. Each such probability measure being called a prior probability
measure, this leads to the often used term multiple priors. It is assumed that the set
of priors is a convex set, which we denote by P . This convex set may be defined
by some inequalities the probability of events should follow (e.g., interval-valued
probabilities).

Given a convex set P of priors, the maxmin expected utility model consists in
taking the act maximizing the minimum of its expected utility, taken over all priors.
Hence, the numerical representation of such a model is

MEU. f / D min
P2P

Z

u. f / dP . f 2 F/: (5.25)

The MEU model yields a pessimistic evaluation of acts, because the less favorable
probability measure is chosen. A dual of the MEU model is to take instead the most
favorable one, replacing min by max. A convex combination of both models yields
the ˛-maxmin expected utility model (Hurwicz [200]), expressed by

˛min
P2P

Z

u. f / dP C .1 � ˛/max
P2P

Z

u. f / dP . f 2 F/ (5.26)

for some fixed ˛ 2 Œ0; 1�.
We give some properties of the multiple prior models.

(i) A particular case of interest is when P is the core of some normalized capacity
	 (see Chap. 3), that is, P is defined as the set of probabilities satisfying
inequalities of the type P.A/ > 	.A/ for every event A. Note however that
this is far from being the general case: a given convex set P is scarcely the
core of some capacity. Take for example S D fs1; s2; s3g and the constraint
P.fs1gjfs1; s2g/ > 1=3. This translates into the inequality 2P.fs1g/ > P.fs2g/,
which is not of the type P.A/ > ˛ (Gilboa [153, Sect. 17.2]).

(ii) On the other hand, any convex set P yields a capacity by taking its lower
envelope, defined by

P�.A/ D inf
P2P P.A/

for every event A. Obviously, P� is a normalized capacity on S, and P� 6 P
eventwise for any P 2 P . It follows that for every act f ,

Z

f dP� 6 min
P2P

Z

f dP:
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Suppose now that P is the core of some capacity 	. Do we have P� D 	? The
answer is negative in general, and a capacity is said to be exact if this equality
holds (in which case, core.P�/ D P). Exact capacities are studied in detail in
Sect. 3.4. In particular, it is known that supermodular capacities are exact.

(iii) Let us assume that P D core.	/ for some normalized capacity	. The question
is: when does CEU coincide with MEU? The answer is given by Theorem 4.39:
the equality

Z

f d	 D min
P2core.	/

Z

f dP

holds for any act f if and only if 	 is supermodular. Hence, the two models
differ in general, and moreover none is more general than the other. To see
that there are some CEU models not representable as a MEU model, just
consider the capacity 	max defined by 	max.A/ D 1 for every nonempty event
A. Then, CEU. f / D maxs2S u. f .s// [see Theorem 4.24(x)]. This is clearly not
representable by MEU because for every probability measure P, there exists
an act f such that

R
u. f / dP < max u. f /. For an example of a MEU model not

representable by CEU, see Wakker [339, Sol. of Exercise 11.9.1, p. 452].
(iv) MEU, as well as the ˛-maxmin model, may violate strict monotonicity, as

shown by the following example: Let S D fs1; s2; s3; s4; s5g, u be the identity
function, and P be the set of all probability measures. Consider the two acts
f D .1; 1; 1; 1; 0/ and g D .1; 0; 0; 0; 0/, where the ith coordinate of the vector
is the outcome of the act for state si. The minimal value of EU for both f
and g is 0, while the maximal value is 1. It follows that f � g for MEU
and any ˛-maxmin model, hence strict monotonicity is violated (Wakker [339,
Appendix 11.9], see also Appendix 11.10).

Example 5.24 (The Ellsberg paradox revisited) We return to our solution of the
Ellsberg paradox given in Sect. 5.3.4. Having found a capacity solving the paradox,
we claimed that the uncertainty representation of the majority of people is not based
on probability, but rather on non-additive measures, namely capacities. However,
having a closer look to the capacity given in Table 5.1, it is possible to interpret it
in terms of multiple priors. Indeed, the set of probability measures compatible with
information on the urn is simply

P D fP on fR;Y;Bg W P.fRg/ D 1=3g:

Now, observe that the lower envelope of P is precisely 	 given in Table 5.1. Since
	 is convex, it follows from previous results that CEU w.r.t. 	 coincides with MEU
w.r.t. P . Hence, the behavior of people faced with the Ellsberg urn can be interpreted
as a pessimistic evaluation considering all possible compositions of the urn (i.e.,
proportions of black and yellow balls). Þ

Remark 5.25 The latter interpretation of the Ellsberg paradox based on the MEU
model may appear more convincing and easy to explain than with the CEU model.
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This is indeed the most attractive feature of the MEU and related models, because
the decision behavior can be explained by a combination of ambiguity with the
simple expected utility model. There is however an important drawback: it is not
easy in a practical situation to determine the set of priors because of its so many
degrees of freedom, and by comparison the CEU model is much more parsimonious
(but maybe difficult to interpret). }

We end this section by briefly giving a behavioral foundation of MEU, due to
Gilboa and Schmeidler [154]. It is based on the Anscombe-Aumann model, like the
axiomatization of Schmeidler. The only change with respect to the latter is that the
independence axiom for comonotonic acts [see (5.23)] is changed as follows: For all
f ; g 2 F, for all constant act h 2 F and all � 2 �0; 1Œ, (5.23) holds. The comparison
of the two axioms explains why CEU and MEU are distinct and none of them is
a generalization of the other, because independence w.r.t. a constant act is neither
weaker nor stronger than comonotonic independence.

We refer the readers to Wakker [339, Chap. 11] and Gilboa [153, Chap. 17] for
further details and similar models.

5.4 Qualitative Decision Making

So far we have taken for granted that representations of preference should be
numerical, that is, with all the power and structure of real numbers (more precisely,
all of our representations so far in this chapter yield interval scales; see Sect. 6.2.2
for an explanation of this term). On the other hand, we have seen that, as far
as a descriptive point of view is taken, the decision mechanisms of people are
sometimes based on a very rough perception of uncertainty. A good example of this
is the inverse S-shape curve of the distortion function of probabilities, exhibiting
likelihood insensitivity, whose extreme case is the crude distinction between “sure
to happen,” “sure not to happen” and “don’t know” (Sect. 5.2.6). Also, some well-
known very simple decision models, like the maximin and the maximax criteria,
which consist in taking the act maximizing either the worst outcome (maximin
model) or the best outcome (maximax model), and thus describing an extreme
pessimism or optimism, need only a comparison between the utility of the outcomes.

The question is then: Do we need the richness of the set of real numbers and
its powerful algebraic structure to build decision models that are supposed to
mimic human behavior? The crude perception of uncertainty and the minimax and
maximax models evoked above certainly do not. On the other hand, everyone will
agree that these examples, although having some reality, are extreme simplifications
of it, and that something more involved is needed, ideally something in between the
rich models around expected utility and the primitive models above. This is exactly
where qualitative decision making enters the picture.

Qualitative decision making deals with models built on ordinal scales (see
Sect. 6.2.2), that is, scales where only comparison between numbers are allowed.
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In addition, models in qualitative decision making use finite scales most of the time,
hence the name “qualitative,” which refers to a totally ordered set of labels, like
“very bad,” “bad,” “good,” etc. The natural representation of uncertainty in this
framework is not probability theory, which requires the full power of interval or
ratio scales, but possibility theory, which can accommodate with a fully ordinal
framework (the readers are advised to read beforehand Sect. 7.7 on possibility
theory). It seems that most of the work along this line has been done by Dubois,
Prade and colleagues. Our exposition follows [115, 116], where the readers can
find a full exposition including proofs, as well as a detailed bibliography. In what
follows, the notation already introduced before (states of nature, consequences, etc.)
remains valid.

5.4.1 Decision Under Risk

In decision under risk, we assume that a possibility distribution � is known on S.
We define a qualitative scale L, i.e., a totally ordered finite set, denoting its least
and greatest element by 0 and 1 respectively. Then � takes values in L, as well
as the utility function u W C ! L. A peculiarity of this setting (and certainly one
of its questionable aspects) is that the same scale is used to represent uncertainty
and utility, so that there is a commensurability problem which must be solved in
practice.

Supposing � and u to be known, two models have been proposed, the pessimistic
one (Whalen [348]) and the optimistic one (Yager [351]). For any act f , they are
respectively defined as follows:

U�. f / D inf
s2S
.n.�.s// _ u. f .s/// (5.27)

U�. f / D sup
s2S
.�.s/ ^ u. f .s///; (5.28)

where n is the (unique because L is finite) negation on L; i.e., the mapping putting L
upside down. We make two comments, helping in understanding the formulas.

(i) If �.s/ D 1 for every s (total ignorance), then the above formulas reduce
respectively to the maximin and the maximax criteria alluded to above.
Hence, the above models can be seen as a generalization of these simplistic
criteria. The effect of � is to penalize (by a threshold effect) consequences
corresponding to states of nature that are not fully possible.

(ii) By comparison with Definition 4.67, one sees that U�. f / is nothing but the
weighted minimum applied to the vector of utility of consequences of f , and �
plays the rôle of the weight vector, while U�. f / corresponds to the weighted
maximum with the same substitution. It follows that, using Theorem 4.69
and Remark 4.70, these models are particular Sugeno integrals. They can be
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rewritten as follows:

U�. f / D �
Z

u. f / dNec (5.29)

U�. f / D �
Z

u. f / d…; (5.30)

where …;Nec are the possibility and necessity measures generated by � . The
analogy with expected utility is now clear: instead of taking the classical
expectation, one takes expectation w.r.t. a possibility or a necessity measure,
through the Sugeno integral.

Remark 5.26 It should be noted that these optimistic and pessimistic models do not
satisfy monotonicity although we considered this as a basic rationality requirement.
Take for example three states of nature, L D f0; 1; 2; 3; 4g, the acts f ; g whose utility
vectors are .1; 2; 3/ and .2; 4; 4/, and � D .4; 2; 2/. Then

U�. f / D .4 ^ 1/ _ .2 ^ 2/ _ .2 ^ 3/ D 2

U�.g/ D .4 ^ 2/ _ .2 ^ 4/ _ .2 ^ 4/ D 2:

A similar example can be found for the pessimistic model. }
As in the classical framework, one can identify acts with lotteries, at the

difference that probability distributions are replaced by possibility distributions. We
denote them by .�1; x1I : : : I�n; xn/, where x1; : : : ; xn are consequences/outcomes,
and �1; : : : ; �n their associated possibility degrees. The mixture of lotteries with
two consequences is defined as follows: take � D .˛; xIˇ; y/ and consider the
compound lottery .�; xI	;�/. Then

.�; xI	;�/ D ..� _ .	 ^ ˛//; xI	 ^ ˇ; y/:

In [116], based on this mixture operation, an axiomatization of the pessimistic model
was proposed, similar to the one of Fishburn/von Neumann-Morgenstern.

The following example [116] illustrates the use of the pessimistic model, and
shows how well it fits intuition. It is based on an example given by Savage [284,
pp. 13–15].

Example 5.27 (The Savage’s omelette revisited) Suppose you are preparing an
omelette, and you have already broken five eggs into a bowl and mixed them. So
far everything is fine. A sixth egg is remaining, but you are wondering if this sixth
egg is fresh or not. Breaking this egg into the omelette would make the omelette
bigger, but if the egg is rotten the whole preparation is wasted. Having read this
chapter, you judiciously define two states of nature: egg is fresh (denoted by sf ) and
egg is rotten (denoted by sr). After thought, you find that there are three possible
ways to act:
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(i) Break the egg into the omelette (this is act fbo);
(ii) Break the egg into another bowl to examine it (this is act fbb);

(iii) Throw away the egg (this is act fth).

Enumerating the consequences of each act under each state of nature yields:

(i) act fbo, state sf : you have a 6-egg omelette (consequence denoted by 6e);
(ii) act fbo, state sr: your omelette is wasted and it is better to think of another menu

(ow);
(iii) act fbb, state sf : you have a 6-egg omelette, but another bowl to wash (6eb);
(iv) act fbb, state sr: you have a 5-egg omelette, and another bowl to wash (5eb);
(v) act fth, state sf : you have a 5-egg omelette and an egg is wasted (5ew);

(vi) act fth, state sr: you have a 5-egg omelette (5e).

About preference on these consequences, you may have the following: the worst
situation is to waste the omelet, then you prefer not to waste an egg. Then, if
possible, you prefer not to have a bowl to wash if the egg is rotten (it is better
to throw it away immediately). Finally, the best situation is a 6-egg omelet, and if
possible, no bowl to wash. Defining a qualitative scale L D f0; 1; 2; 3; 4; 5g (labels
could be used instead of numbers), the previous preferences on consequences can
be translated into a utility function u W C ! L defined by:

u.6e/ D 5; u.6eb/ D 4; u.5e/ D 3

u.5eb/ D 2; u.5ew/ D 1; u.ow/ D 0:

It remains to compute the pessimistic utility U� for each act. Recall that � is defined
on L, too. Since S has only two states, we have n.�.sf // D Nec.fsrg/ and n.�.sr// D
Nec.fsf g/. In addition, we have Nec.fsf g/ ^ Nec.fsrg/ D 0. Hence, we obtain

U�. fbo/ D �
Nec.fsrg/ _ u.6e/

� ^ �Nec.fsf g/ _ u.ow/
�

D Nec.fsf g/
U�. fbb/ D �

Nec.fsrg/ _ u.6eb/
�^ �Nec.fsf g/ _ u.5eb/

�

D 4 ^ �Nec.fsf g/ _ 2�

U�. fth/ D �
Nec.fsrg/ _ u.5ew/

� ^ �Nec.fsf g/ _ u.5e/
�

D
(
1; if Nec.fsf g/ > 0
�
Nec.fsrg/ _ 1� ^ 3; otherwise.

The best decisions are therefore:

(i) If Nec.fsf g/ D 5 (you are sure that the egg is fresh), it is better to break the
egg into the omelet;

(ii) If Nec.fsf g/ 2 f2; 3; 4g (you are rather sure that the egg is fresh), it is
indifferent between breaking the egg into the omelet or in a bowl;
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(iii) If Nec.fsf g/ < 2 and Nec.fsrg/ < 2 (you are rather ignorant of the quality of
the egg), it is better to break the egg in a bowl;

(iv) If Nec.fsrg/ D 2 (you have a little doubt on the egg), it is indifferent to break
the egg in a bowl or to throw it away;

(v) If Nec.fsrg/ > 2 (you do not think that the egg is fresh), it is better to throw it
away.

Note that the numbers play no rôle (in the cardinal sense) in the computation, only
order matters. Þ

5.4.2 Decision Under Uncertainty

The foregoing pessimistic and optimistic models are the qualitative equivalents
of expected utility, and could be used in decision under uncertainty as well. As
expected utility is a particular case of Choquet expected utility, and because the
pessimistic and optimistic models are particular Sugeno integrals, it seems natural to
introduce Sugeno expected utility (abbreviated by SugEU) as the qualitative version
of Choquet expected utility. This model is given by, using the same notation as in
Sect. 5.4.1,

SugEU. f / D �
Z

u. f / d	; (5.31)

where 	 is a capacity on S.
Dubois et al. [115] have proposed an axiomatization of SugEU, in a way very

close to the axiomatization of Savage. Recall that the sure-thing principle is the
central axiom in Savage’s framework. It is easy to see that it is not satisfied even by
the foregoing optimistic and pessimistic models. Indeed, a strict preference fEh 
gEh can easily be turned into an indifference fEh0 � gEh0, even with U� being the
standard maximum. Take for example S D fs1; s2g, u the identity function, L D
f0; 1; 2; 3g, E D fs1g, �.s1/ D 3; �.s2/ D 3. Then, with f D .2; 0/, g D .1; 0/,
h D .0; 0/, we get U�. fEh/ D 2 > 1 D U�.gEh/. However, with h0 D .0; 3/ we
get U�. fEh0/ D 3 D U�.gEh0/. Similar examples can be found with the minimum
as well. It can be shown that these models indeed satisfy a weak version of the
sure-thing principle:

fEh  gEh ) fEh0 < gEh0 . f ; g; h; h0 2 F/:

In the following axiomatization of SugEU, axiom WP3, similar to P3 of Savage,
is central and can be considered to replacing the sure-thing principle. For a
consequence ˛ 2 C, the constant act yielding ˛ for every state of nature is denoted
by ˛S.
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WP3 For all E � S, all h 2 F, all ˛; ˇ 2 C such that ˛S < ˇS, we have ˛Eh <
ˇEh.

The next two axioms capture the ordinal nature of the model, by involving the
min and max operations on acts.

RCD (Restricted Conjunctive Dominance) For all acts f ; g 2 F and all conse-
quences ˛ 2 C, if g  f and ˛S  f , then g ^ ˛S  f ;

RDD (Restricted Disjunctive Dominance) For all acts f ; g 2 F and all conse-
quences ˛ 2 C, if f  g and f  ˛S, then f  g _ ˛S.

The fact that SugEU satisfies these two properties is immediate from the fact that the
Sugeno integral satisfies positive ^- and _-homogeneity [Theorem 4.43(i) and (ii)].
In addition, these properties together with monotonicity characterize the Sugeno
integral (Theorem 4.60). The following theorem can be seen as an analog of the
latter in a decision framework.

Theorem 5.28 (Axiomatization of SugEU) Let < be a binary relation on F, and
suppose S and C to be finite. The following two propositions are equivalent.

(i) < is complete and transitive, and satisfies axioms WP3, RCD and RDD;
(ii) There exist a finite qualitative scale .L;>/, a unique utility function u W C ! L,

and a unique capacity 	 on 2S such that SugEU given by (5.31) represents <.

We now give an axiomatization of the pessimistic and optimistic models U�;U�,
which are particular cases of SugEU. The two key axioms leading to these models
are:

PES (pessimism) For all acts f ; g 2 F, all events E � S,

fEg  f ) f < gE f I

OPT (optimism) For all acts f ; g 2 F, all events E � S,

f  fEg ) gE f < f :

The meaning of PES is the following. Consider an act f that can be improved by
changing its consequences if Ec realizes (put differently, f is not favorable when Ec

realizes). Then there is no way of improving f by changing its consequences on E.
This rather strange conclusion can be explained if the decision maker is pessimist,
in the sense that E and Ec are considered to be equally plausible, and the decision
maker focuses on bad consequences. The following example illustrates this.

Example 5.29 (Dubois et al. [116, p. 468]) Consider Gamble 1, consisting in tossing
a coin, and makes you win $10,000 if heads comes up, and lose $10,000 if tails
comes up. This gamble is normally less preferred than Gamble 2, yielding $10,000
if heads, and nothing if tails comes up. Consider now Gamble 3, where you can
win $20,000 if heads, and lose $10,000 if tails. If you are pessimist in the above
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sense, then, although preferring Gamble 2 to Gamble 1, you are indifferent between
Gamble 1 and 3. Þ

This very peculiar behavior, which could be called extreme pessimism (and quite
questionable in a quantitative framework) is of course not representable by EU, and
is the essence of the pessimistic model. A similar interpretation can be obtained for
axiom OPT.

The characterization of the pessimist and optimist models are given in the next
theorems.

Theorem 5.30 (Axiomatization of the pessimist qualitative model) Let < be a
binary relation on F, and assume S and C to be finite. The following two propositions
are equivalent.

(i) < is complete and transitive, and satisfies axioms WP3, RDD and PES;
(ii) There exist a finite qualitative scale .L;>/, a unique utility function u W C !

L, and a unique possibility distribution on S such that U� given by (5.27)
represents <.

Theorem 5.31 (Axiomatization of the optimist qualitative model) Let < be a
binary relation on F, and assume S and C to be finite. The following two propositions
are equivalent.

(i) < is complete and transitive, and satisfies axioms WP3, RCD and OPT;
(ii) There exist a finite qualitative scale .L;>/, a unique utility function u W C !

L, and a unique possibility distribution on S such that U� given by (5.28)
represents <.



Chapter 6
Decision with Multiple Criteria

This second application chapter explores decision with multiple criteria, usually
called “multicriteria decision making” (MCDM). It deals with situations where
the decision maker has to make decision considering together several points of
view (criteria), which are often antagonistic. This covers many everyday life
decision problems, like choosing a restaurant or a movie, buying a new car or
renting an apartment, etc. Our presentation of the topic is unconventional, although
based on classical concepts and results from multiattribute utility theory (MAUT)
and measurement theory. We start from scratch, and ask ourselves under which
conditions does the decomposable model (a very commonly used model consisting
in assigning numerical scores on each criterion and aggregating them into a single
overall score), exist, and how to build it. While the answer to the first question
(conditions of existence) is well known and is a standard result of measurement
theory, the answer to the second question is less obvious, and it is precisely here
that we are unconventional. We show that in order to build scores on criteria, either
difference measurement can be applied (under the assumption of weak difference
independence), or reference points must be found on each criterion, which permits
to apply the MACBETH method. With the latter method, we show that we are
naturally lead to the use of the Choquet integral for aggregating the scores of the
criteria. Interestingly enough, with the former approach based on the assumption of
weak difference independence, it is known since the seventies through the works of
Dyer and Sarin, Keeney and Raiffa, that the only possible model of aggregation is
the multilinear model, also called Owen extension of a capacity. Remembering that
the Choquet integral is the Lovász extension of a capacity, this shows in a striking
way that capacities are firmly rooted in multicriteria decision making.

Section 6.10 introduces the notion of importance of criteria and interaction
between criteria. It is shown that the interaction transform and Banzhaf interaction
transform of Chap. 2 can be seen as interaction indices (defined through the average
total variation of an aggregation function) of the Choquet integral and the multilinear
model, respectively. The chapter ends with Sect. 6.11 on ordinal models, that is,
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built without numbers. Here, the Sugeno integral appears to be the natural tool for
aggregating scores on criteria, however, the model has a rather poor discriminative
power, which can be improved using lexicographic refinement.

The readers may consult the classical textbook of Keeney and Raiffa [205]
for full details on MAUT (see also Dyer [119]), as well as other monographs on
MCDM, e.g., Pomerol and Barba-Romero [269], the edited book by Figueira et al.
[139], and the survey by the author and Labreuche [175] on the application of the
Choquet integral in multicriteria decision making.

6.1 The Framework

Decision under multiple criteria deals with situations where an agent (called
the decision maker) has to choose between several objects, alternatives, options,
etc. (called hereafter alternatives), considering together several points of view or
criteria pertaining to different aspects, descriptors or attributes, which describe the
alternatives under consideration. In contrast to decision under risk and uncertainty
(Chap. 5), the decision maker is supposed to have full information on the alterna-
tives, that is, on the values taken by the attributes, hence there is here no uncertainty
nor contingencies entering the picture. The decision problem is nevertheless difficult
because most of the time, there are antagonistic points of view: some alternatives
may be best preferred under some point of view, but are much less attractive under
another point of view. The fundamental difficulty behind is simply that there is no
natural complete order on multidimensional objects.

We now introduce the main ingredients of a multicriteria decision problem. An
object or alternative of interest x is represented by a vector .x1; : : : ; xn/, where xi

is the value of the ith attribute or criterion1 of x, i D 1; : : : ; n. We denote by
Xi the set of all possible values of the ith attribute, i D 1; : : : ; n. The set of all
potential alternatives, considering all possible combinations of the values taken
by the attributes, is X D X1 � � � � � Xn. We set N D f1; : : : ; ng the index set of
attributes/criteria.

NOTE: As all the subsequent discussion becomes void if n D 1, we assume throughout the
chapter that n > 2.

The preference of the decision maker over the alternatives is represented by a
binary relation < on X, which is supposed to be a complete preorder (complete and
transitive, see Sect. 1.3.1). We denote by � and  the symmetric and asymmetric
parts of <. As in Chap. 5, x < y reads “x is preferred to y” or “x is at least as good

1We indifferently use the two terms, although a distinction is usually made between them,
“attribute” referring to the objective description of the object (e.g., the maximum speed of this
car is 200 km/h) and “criterion” to the subjective perception of the decision maker (e.g., this car is
fast).
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as y,” x  y reads “x is strictly preferred to y, and x � y reads “x is indifferent to y.”
The relation � is called the indifference relation, and is an equivalence relation.

Example 6.1 Many everyday life decision problems fall under the scope of decision
with multiple criteria: buy a new car, rent a house, buy a flight ticket, choose a
movie, choose a menu in a restaurant, etc. Taking the example of the flight ticket,
we consider X as the set of possible flight tickets, say, from Montréal to Moscow, for
a given date. The set of attributes could be: price of the ticket, duration of the flight,
departure time, arrival time, number of transfers, company. We remark that attributes
1, 2 and 5 are numerical (nonnegative numbers), 3 and 4 are time indications in
format hh:mm, and the sixth one is alphabetic (string of characters). Þ

One of the main aims of decision theory is to build a numerical representation of
preference, in the following sense: find a function u W X ! R such that

x < y , u.x/ > u.y/ .x; y 2 X/: (6.1)

The function u is called the (overall) utility or value function.2 A fairly general and
commonly used model for representing < is the monotone decomposable model:

u.x/ D F.u1.x1/; : : : ; un.xn// .x 2 X/ (6.2)

where u1; : : : ; un are (marginal) value functions from Xi to R, and F is a function
which is increasing in each variable.

The functions ui play the same rôle as the utility function in decision under
uncertainty or risk: it translates “outcomes” (here, values on attributes, which are
not necessarily numerical) into real numbers. The intuition behind is that ui.xi/

reflects the satisfaction of the decision maker regarding the value xi: the higher the
satisfaction, the higher the quantity ui.xi/, and the higher the (positive) impact on
u.x/ by means of the increasing function F. For this reason, we may call score3 of
x on attribute i the quantity ui.xi/. Taking the foregoing example of the flight ticket,
one may define value functions on a scale from 0 (worst) to 100 (best), and writing
u6.Syldavian Airlines/ D 90 would indicate that the decision maker likes a lot this
company for some reason (quality of on board service, meals, movies, possibility to
get bonus miles, etc.).

Function F aggregates the scores obtained on each criterion to produce the
overall value (score) of the alternative x. A very common example for F is the
weighted arithmetic mean, with positive weights. One may be less restrictive and

2In MCDM and MAUT, the usage is to call it a value function. The term “utility function” is more
for decision under risk and uncertainty.
3Anticipating the topic of Sect. 6.2, readers should be aware that the term “score” suggests a
cardinal interpretation of the numbers, that is, it quantifies the intensity of preference. As we will
see, this should not be taken for granted.
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allow F to be only nondecreasing in each place. Also, a more general model is the
decomposable model, where F is one-to-one in each variable.

The (monotone) decomposable model is intuitively appealing because it corre-
sponds to the way in which people naively do when faced with multicriteria decision
making: for each alternative, put scores for each criterion and aggregate the scores
to get an overall score, for example using a weighted arithmetic mean. This apparent
simplicity and obviousness hides many theoretical and conceptual intricacies, which
will be developed in this chapter. Basically, two fundamental questions arise:

Q1 Under which conditions on X and < does the (monotone) decomposable
model exist?

Q2 How to build u1; : : : ; un, how to choose (and build) F?

We will answer these questions in the sequel, and show that the Choquet integral
appears as a natural candidate for the function F. The first question will be
elucidated with the help of measurement theory, presented in the next section.

6.2 Measurement Theory

Measurement theory, not to be confused with measure theory, tells us the art
of measuring properties of objects, either of the real world or more conceptual
ones, that is, how to put numbers on these objects so that they represent physical
comparisons or manipulations made on the objects. The interested readers may
consult the impressive monograph of Krantz et al. [217], as well as the one of
Roberts [275]. More accessible surveys including recent developments related to
decision with multiple criteria and multiattribute utility theory as well as a wide
literature can be found in [39, 119].

6.2.1 The Fundamental Problem of Measurement

Formally, let us consider A a set of objects, < a binary relation on A, called the
comparison relation, which pertains to some property of the objects, and � W A �
A ! A a binary operation on A, called concatenation. We call A D .A;<;�/
a relational system. The concatenation operation may be omitted in the relational
system.

Example 6.2 We may consider for A any kind of objects, like pencils, turnips,
bananas, gnus, movies, etc. Common examples of physical comparison relation are:
length, weight, temperature, etc., but could be also preference: a < b would read “a
is longer (heavier, hotter) than b,” or “a is preferred to b.” The concatenation relation
depends on < and is not always defined. For length it consists in putting two pencils
end to end and considering their total length, for weight, in putting two turnips in



6.2 Measurement Theory 329

the same basket and weighing the basket, etc. There is no significant concatenation
relation for temperature, nor for preference. Þ

The fundamental problem of measurement is to find a homomorphism between
two relational systems A D .A;<;�/ and B D .B;<0;�0/, that is, a function f W
A ! B satisfying

a < b , f .a/ <0 f .b/ (6.3)

f .a � b/ D f .a/ �0 f .b/: (6.4)

Most often B is nothing other than .R;>;C/, the set of real numbers endowed with
the usual comparison relation, and addition. In this case, we already note that our
definition of numerical representation of a preference, given by (6.1), is nothing
but (6.3). Such kind of measurement problem, without considering concatenation,
is called ordinal measurement.4

We call scale the triplet .A;B; f /, and say that the scale is numerical if B D R. If
the context is understood, we may call f the scale. In the above example, a function
f assigning to each pencil its length in centimeters is clearly a numerical scale.

6.2.2 Main Types of Scales

We know that even for a given comparison relation on a property like length, many
scales have been defined in the past: meters, but also feet, inches, miles, light years,
etc., and the same is true for weight, temperature, magnetic field, and all physical
scales. In most cases, all is a matter of a multiplicative constant, but not always: the
conversion from Celsius degrees (ıC) to Fahrenheit degrees (ıF) is achieved through
the transformation x 7! 9

5
x C 32.

4Although in the sequel we will not refer any more to the concatenation operation, we give
a few explanations on it. Measurement including a concatenation relation is called extensive
measurement. The following important theorem can be shown [217, Theorem 3.1]: Let AD.A;
<;�/ be a relational system. Then (6.3) and (6.4) both hold if and only if < is complete and
transitive, and the concatenation operation satisfies:

• Weak associativity: a � .b � c/ � .a � b/ � c;
• Monotonicity: a < b iff a � c < b � c iff c � a < c � b;
• Archimedean: If a < b, then for any c; d 2 A, there exists a positive integer n s.t. na�c < nb�d,

where na is defined inductively as 1a D a, .n C 1/a D na � a.

Proving this theorem amounts to reducing it to its analog for strictly ordered groups, the well-
known Hölder’s theorem: Let < be a transitive, complete and antisymmetric relation on A, and
suppose that .A;�/ is a group with neutral element e satisfying (1) a < b implies a � c < b � c
and c � a < c � b, and (2) a � e and b 2 A imply na � b for some n 2 N (ordered group). Then
.A;<;�/ is isomorphic to a subgroup of .R;>;C/.
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More generally, if f is a scale and ' W B ! B a mapping such that
' ı f is still a homomorphism between A and B, ' is said to be an admissible
transformation. Classes of admissible transformations define types of scale, whose
main ones are summarized in Table 6.1. Ratio scales are the most common for

Type of scale Admissible transformations Examples

Absolute scale ' D Id Counting

Ratio scale '.x/ D ˛x, ˛ > 0 Mass, length, temperature in K

Interval scale '.x/ D ˛x C ˇ, ˛ > 0 Temperature in ıC, calendar

Ordinal scale ' increasing Mohs scale (hardness), Beaufort scale (wind)

Nominal scale ' arbitrary List of nouns
Table 6.1 Main types of scale

physical magnitudes. They are characterized by the presence of a “true” zero,
having an absolute physical meaning (e.g., 0K indicates total absence of molecular
movement). By contrast, interval scales have a zero whose position is a matter of
convention and may be shifted: 0 ıC indicates the freezing temperature of water,
while 0 ıF (�17:8 ıC) is the lowest temperature observed by Fahrenheit in Dantzig5

during winter 1708–1709. Similarly, the first year in a calendar depends on the
cultural context where it is used: the Gregorian calendar starts with the birth of
Jesus-Christ, while in Japan, a new calendar starts each time a new emperor is going
to reign.

Numbers on an ordinal scale do not have in general their usual cardinal
meaning and should be manipulated with care, because only order matters: If
objects a; b; c; d have magnitude 1; 2; 3; 4 on an ordinal scale, any sequence of four
increasing numbers would constitute another valid scale, like �124; 0; �2; e4. As a
consequence, propositions made on these objects and involving usual arithmetic
operations like C;� (for instance, a is twice as b) are in general meaningless,
in the sense that they do not remain valid under an admissible transformation of
the scale. Only propositions involving comparisons (using minimum, maximum)
remain always valid.

6.2.3 Ordinal Measurement

As we said above, ordinal measurement corresponds exactly to the problem of the
numerical representation of preferences; see (6.1). When A is finite, there exists
a trivial numerical representation, because it suffices to consider the equivalence
classes of � and number them in increasing preference order. When A is countable,
the result still holds (see, e.g., Fishburn [141, Theorem 2.2] for a proof). If A is

5Nowadays, Gdańsk, in Poland.
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uncountable, such a representation may not exist, as the following famous example
shows.

Example 6.3 (The lexicographic ordering (Debreu [74])) The lexicographic order-
ing is a binary relation on R

2 defined as follows:

.a; b/ lex .c; d/ ,
(

a > c; or

a D c and b > d
:

There is no numerical representation of this order, for, if such a representation f
would exist, by .a; 1/ lex .a; 0/ we would have f .a; 1/ > f .a; 0/. Since Q is dense
in R, there would exist g.a/ 2 Q such that f .a; 1/ > g.a/ > f .a; 0/, and this would
define a mapping g W R ! Q. Now, this mapping would be injective because taking
a > b, we have

g.a/ > f .a; 0/ > f .b; 1/ > g.b/:

But no injective mapping from the real numbers to the rational numbers exists. Þ

A necessary and sufficient condition for the existence of a numerical representation
of a preorder is order-denseness. Let < be a complete, antisymmetric and transitive
binary relation on A. We say that B � A is order-dense in .A;</ if for all a; b 2 AnB
such that a  b, there exists c 2 B such that a  c  b. This definition is a
generalization of the usual notion of denseness (e.g., Q is dense in R).

Theorem 6.4 (Existence of ordinal measurement) Let .A;</ be a relational
system. There exists a homomorphism from .A;</ to .R;>/ if and only if < is a
complete preorder, and the quotient set A=� contains a countable subset that is
order-dense in A.

(See Krantz et al. [217, Chap. 2, Theorem 2], or Fishburn [141, Theorem 3.1] for a
proof.)

Remark 6.5 This fundamental result was proved many times, the first one by
G. Cantor6 [42] for the countable case. It seems that the representation part (“if”
part) was first proved by Milgram [242], and there is an incomplete proof by
Birkhoff [30, 1948 edition, pp. 31–32]. The above theorem is by the way often
called the Birkhoff-Milgram theorem (Roberts [275]). The representation part was
also proved by Debreu [74]. See also Herden and Mehta [194] for a generalization
and a detailed study of this result. }

Going back to our representation problem (6.1), Theorem 6.4 tells us that there
exists a mapping u W X ! R if and only if < is a complete preorder (which is

6Georg Ferdinand Ludwig Philipp Cantor (Saint Petersburg, 1845 – Halle, 1918) is a German
mathematician, to whom we owe set theory and a deep and revolutionary study of infinity, through
the notions of cardinal and ordinal numbers.
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assumed), and X=� has a countable order-dense subset. It remains to find a condition
to force the decomposability; i.e., u has the form (6.2).

Definition 6.6

(i) A preorder is weakly independent if for every i 2 N, every x; y; z; z0 2 X, we
have

.xi; z�i/ < .yi; z�i/ , .xi; z
0�i/ < .yi; z

0�i/;

where we have omitted braces for singletons (see Sect. 1.1(xi) for the notation).
(ii) A preorder is weakly separable if for every i 2 N, every x; y; z 2 X, .xi; z�i/ 

.yi; z�i/ implies that there is no z0 2 X such that .yi; z0�i/  .xi; z0�i/.

Clearly, weak independence implies weak separability, but not the converse. In
words, weak independence says that the preference between two values of an
attribute, ceteris paribus, should not depend on the values of the remaining
attributes. Taking the example of the flight ticket, where the criteria are cost,
duration, departure time, arrival time, direct/non-direct, company, you may have
the preference

.1000C; 12h; 21:00; 12:00; direct;Syldavian Airlines/ <
.1000C; 12h; 21:00; 12:00; direct;Bordurian Airlines/:

Weak independence implies that the values on attributes cost, duration, departure
and arrival time, direct/non-direct, may be changed without reversing preference,
for example:

.600C; 18h; 21:00; 18:00; non-direct;Syldavian Airlines/ <

.600C; 18h; 21:00; 18:00; non-direct;Bordurian Airlines/:

This requirement is natural in most cases, although one can find examples where
this is not true, as in the following one.

Example 6.7 (Violation of weak separability) Let us consider X to be a set of cars,
described with four attributes: color, type of car (sports, sedan, wagon, supermini),
speed and comfort. Suppose the decision maker has the following preference:

.metallic grey; sedan; 200 km/h; comfortable/.red; sedan; 200 km/h; comfortable/;



6.2 Measurement Theory 333

which means that metallic grey is preferred over red for a sedan type car. Now, it
would not be surprising if, when considering a sports car, this preference would be
reversed:

.red; sports; 300 km/h; not comfortable/ 
.metallic grey; sports; 300 km/h; not comfortable/;

because for a sports car, red is more appealing than metallic grey. In this case, the
preference over colors is conditional on the type of car. Þ

Remark 6.8

(i) The name “weak independence” suggests the existence of a stronger notion
of independence. Indeed, in MAUT, a nonempty subset I � N is said to be
(preference) independent of its complement N n I if .xI; z�I/ < .yI; z�I/ is
equivalent to .xI ; z0�I/ < .yI; z0�I/ (see, e.g., Keeney and Raiffa [205], Dyer and
Sarin [120], Dyer [119]). Hence, weak independence means independence for
every singleton. If independence holds for every nonempty subset I � N, < is
said to satisfy mutual preference independence. Observe that the latter property
is the counterpart of the sure-thing principle in decision under uncertainty
(Sect. 5.3.2);

(ii) Since in MAUT several notions of independence exist (like preference inde-
pendence, utility independence and additive independence), we should speak
of weak preference independence. However, we nevertheless drop the term
“preference” because we are concerned in this chapter with only this type of
independence. Note also that weak independence is sometimes called “weak
separability”, e.g., by Wakker [335].

}
The following can be shown and gives a complete answer to Question Q1.

Theorem 6.9 (Existence of a monotone decomposable model) Let X D X1�� � ��
Xn and < be a binary relation on X. The following holds.

(i) (Krantz et al. [217, Chap. 7, Theorem 1]) A numerical representation of < in the
form (6.2) with F increasing in each place exists if and only if < is a complete
and weakly independent preorder, and X=� has a countable order-dense subset;

(ii) (Bouyssou and Pirlot [38, Proposition 8]) A numerical representation of < in
the form (6.2) with F nondecreasing in each place exists if and only if < is a
complete and weakly separable preorder, and X=� has a countable order-dense
subset.

A similar result for the decomposable model (with F being one-to-one in each place)
exists. It suffices to replace < by � in the definition of weak independence.
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Remark 6.10 Another way to interpret weak independence is the following: under
this assumption, it is meaningful to define a preference relation <i on a single
attribute Xi, for each i 2 N, by letting xi <i yi if .xi; z�i/ < .yi; z�i/ for some
z 2 X. Now, <i inherits the properties of <, so that by Theorem 6.4, there exists a
value function ui on Xi representing <i.

The answer to Question Q2 takes much more effort. We first try to build the
value functions u1; : : : ; un. To this end, still further notions of measurement theory
are necessary.

6.2.4 Difference Measurement

According to our classification of scales in Sect. 6.2.2, ordinal measurement yields
an ordinal scale, which means that the numerical representation conveys little
information. Indeed, the function u is defined up to an increasing transformation,
making the numbers u.x/; u.y/ assigned to alternatives x; y without cardinal meaning
because usual arithmetic operations on them are in general not meaningful.

Therefore, a richer type of scale is needed, like an interval scale, defined up to
a positive affine transformation. In decision making, interval scales are the more
commonly used. A ratio scale is an interval scale for which one can find a “zero”
with an absolute meaning. To build such scales requires much more information
from the decision maker, and difference measurement is one possible way to build
an interval scale. We describe in Sect. 6.4 another way to achieve this. Both methods
are based on the perception by the decision maker of intensity of preference.

We consider a quaternary relation <� on A, that is, a subset of A2� A2. We write
ab <� st for a; b; s; t 2 A if the difference of intensity of preference of a over b is
greater or equal to the difference of intensity of preference of s over t. We use the
same notation as before and denote by ��;� the symmetric and asymmetric parts
of <�.

Given such a quaternary relation, difference measurement amounts to finding a
mapping f W A ! R such that

ab <� st , f .a/ � f .b/ > f .s/ � f .t/: (6.5)

Sufficient conditions for such a representation are given in the next theorem. This
result relies on the following notion: a standard sequence in .A;<�/ is a sequence
a1; : : : ; an of elements in A such that aiC1ai �� a2a1 for i D 2; : : : ; n � 1, and
a2a1 6�� a1a1. In words, a sequence is standard if its elements are “equally spaced,”
in terms of preference. A standard sequence a1; : : : ; an is strictly bounded if there
exist s; t 2 A such that st � aia1 � ts, for i D 2; : : : ; n.

Theorem 6.11 (Existence of difference measurement) (Krantz et al. [217,
Chap. 4, Theorem 2]) Let .A;<�/ where <� is a quaternary relation on A. There
exists a mapping f W A ! R such that (6.5) is satisfied if
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(i) The binary relation < on A defined by .a; b/ < .s; t/ if and only if ab <� st is
a complete preorder;

(ii) ab <� st implies ts <� ba;
(iii) ab <� a0b0 and bc <� b0c0 imply ac <� a0c0;
(iv) ab <� st and st <� aa imply that there exist u; v 2 A such that au �� st and

vb �� st;
(v) Every strictly bounded standard sequence is finite.

Moreover, if such a mapping f exists, it is defined up to a positive affine transforma-
tion, and therefore is an interval scale.

Remark 6.12 As it is clear from (ii) in Theorem 6.11, when writing ab, it is not
assumed that a is preferred to b; i.e., that the difference f .a/ � f .b/ is nonnegative.
There exists a version of Theorem 6.11 dealing only with what is called positive
differences, which is slightly more complicated [217, Chap. 4, Theorem 1], and has
the same conclusion, that is, the existence of a function f satisfying (6.5), which is
unique up to a positive affine transformation. }

Theorem 6.11 can be seen as the counterpart of Theorem 6.4 for quaternary
relations. As we did for ordinal measurement, we have now to consider the case
where the set of objects A is multidimensional in order to go back to our original
representation problem [Eqs. (6.1) and (6.2)]. In particular, we are interested in
building the value function ui on each attribute Xi. Here arises a particularly thorny
question. Ideally, one would like to build separately these value functions, mentally
isolating each attribute from the rest, asking to the decision maker questions like:

Do you prefer a flight ticket at 400C or 600C? (ordinal measurement)

or

Is the difference of preference between 300C and 500C greater or equal to the
difference of preference between 400C and 600C? (difference measurement)

Strictly speaking, these questions are meaningless if one considers that the
decision maker is only able to compare alternatives, that is, elements of X D
X1 � � � � � Xn. The above questions concern a single attribute Xi, and would suppose
the existence of relations <i and <�

i on Xi; however our assumption is that only
<;<� on X are available. The only way to make these questions meaningful would
be that, for ordinal measurement, weak independence holds so that the comparison
of elements xi; yi 2 Xi does not depend on the values of the other attributes,
provided they are identical for the two alternatives (see Remark 6.10). Therefore,
a similar property is needed for difference measurement as well, which is called
weak difference independence.

Definition 6.13 A quaternary relation <� satisfies weak difference independence if
for every i 2 N and every x; y; z;w; s; t 2 X, we have

.xi; t�i/.yi; t�i/ <� .zi; t�i/.wi; t�i/ ,
.xi; s�i/.yi; s�i/ <� .zi; s�i/.wi; s�i/:
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If weak independence was still a reasonable condition, weak difference indepen-
dence is more demanding and is not satisfied in any situation. The following
example illustrates this.

Example 6.14 Suppose you intend to buy a new car, considering essentially three
attributes: price, performance of engine and equipment. You would prefer a low
price, high performance and good equipment, and because all these criteria are
important for you, you would prefer a car with a balanced profile rather than
an unbalanced one, e.g., (reasonably expensive, reasonably good performance,
reasonably good equipment)(expensive, very good performance, reasonably good
equipment). In other words, you think that a good point cannot compensate a weak
point.

Now, consider four cars a; b; c; d having very good performance and very
good equipment, whose prices are respectively (in increasing order) “reasonably
expensive”, “reasonably expensive + 5000C”, “expensive”, “expensive + 5000C”.
Suppose that you are indifferent between these increments of 5000C; i.e., ab �� cd,
the reason being that all these cars have anyway unbalanced profiles.

Consider next four other cars a0; b0; c0; d0 , whose prices are respectively the prices
of a; b; c; d, but now all these cars have reasonable performance and equipment.
Then clearly a0 is your preferred car, and the perceived difference of price between
a0 and b0 is much more important than between c0 and d0, because b0, being less
balanced than a0, is definitely less preferred than a0, and c0; d0 are anyhow out of
consideration. Hence a0b0 � c0d0, violating weak difference independence. Þ

In the case where weak difference independence does not hold, the construction
of value functions must be done considering a fixed and particular level for the
remaining attributes, or considering several such levels. We give in Sect. 6.4.2 a
construction considering the former method.

We leave aside measurement theory and borrow some notions from psychology.

6.3 Affect, Bipolarity and Reference Levels

Psychologists think that “affect” is a fundamental element in the mechanism of
decision of humans. Affective reactions to stimuli are often the very first reactions,
guiding information processing and judgment. Choices made are then justified a
posteriori by various (rational) reasons. We borrow the definition given by Slovic
[308]:

Affect: The specific quality of “goodness” and “badness,” (1) experienced as
a feeling state (with or without consciousness) and (2) demarcating a positive
and negative quality of a stimulus.

Hence, affect is closely related to our ability to distinguish between good and bad
alternatives. The neurologist A. Damasio [65] asserts from clinical observations that
individual having brain damages destroying their ability to feel while keeping basic
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intelligence, memory, and capacity for logical thinking intact,7 lose their ability
to make rational decisions, making them socially dysfunctional even though they
remain intellectually capable of analytical reasoning.

6.3.1 Bipolarity

The most prominent feature of affect is its bipolar nature: there are two opposite
poles (good/bad) corresponding to positive and negative stimuli, as well as a frontier
between the two, which could be called a neutral zone or level, neither good nor bad.
Hence, scales (in the measurement theoretic sense) used in a model of preference
representation should reflect the bipolar nature of the affect. However, classical
measurement theory does not incorporate bipolarity when building numerical
representations.

There are basically two ways for representing bipolarity on a scale: the bipolar
univariate model (Osgood et al. [260]), and the unipolar bivariate model (Cacioppo
et al. [41]). The bipolar univariate model reflects the above definition of bipolarity
and simply consists in a single axis with a central 0 value representing the neutral
level (see Fig. 6.1). On this scale, positive values encode intensity of stimuli

− 0 +

bad neutral good

Fig. 6.1 The bipolar univariate model

corresponding to good alternatives, or good values of attributes, etc., while negative
values encode the intensity of stimuli corresponding to bad alternatives. The central
0 value represents the neutral level. On the other hand, the more recent unipolar
bivariate model uses two independent axes that are unipolar, bounded below by
0 (Fig. 6.2). The horizontal axis encodes positive stimuli, while the vertical axis

−

+
0

ba
d

neutral
good

Fig. 6.2 The unipolar bivariate model

7See the famous case of Phineas P. Gage, in 1848, who was wounded by an iron bar traversing the
front of his brain, but nevertheless survived this accident (described in Damasio [65]).
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encodes negative stimuli. In this model, a given alternative may cause both a positive
and a negative stimulus at the same time, and in an independent way. For example,
eating chocolate may give some gustative pleasure (positive affect), while at the
same time one may feel some greediness (negative affect).

Although the unipolar bivariate model may provide a richer model, we do not
think it is suitable for modeling affect concerning values taken by a given attribute
Xi, because an attribute is already considered to be a single “dimension” describing
alternatives, which in principle cannot be subdivided into subdimensions (at least,
into subdimensions of interest for the analysis). Clearly, the chocolate example is
multidimensional and refers to two attributes (taste, effect on diet).

6.3.2 Reference Levels

Another important discovery in psychology concerning decision making is evalu-
ability and dominance of proportion. Evaluability means that attributes whose
perception is imprecise or without clear reference level have little importance in
the final decision (or preference relation). This is well illustrated by the following
experiment, due to Hsee [198].

Example 6.15 (The dictionnary experiment) At a second-hand book sale, two
music dictionnaries are presented. The first one (A) has 10,000 entries and is
in excellent condition, while the second one (B) has 20,000 entries, is in good
condition except that its cover is torn.

In the first experiment, the two dictionnaries A and B are presented together to
subjects, who are asked to estimate a price they are ready to pay for them. In general,
subjects are inclined to pay more for B than for A.

In the second experiment, the question asked to subjects is the same but to each
subject only one dictionnary (A or B) is shown. Surprisingly, the price estimated for
A is now higher than for B.

This can be explained as follows: in the first experiment, subjects evaluate the
dictionnaries mainly on the first attribute (number of entries), which is considered
to be more important than the second one (condition of the dictionnary). Then B
is priced higher because it contains twice as many entries as A. In the second
experiment, subjects see only one dictionnary, and because they have no precise idea
of how many entries a good dictionnary of music should contain, they are unable to
evaluate the dictionnary with regard to this attribute. Since on the other hand A is
clearly in good condition while B is not, A is priced higher than B. Þ

Dominance of proportion means that attributes that are expressed as a proportion
or percentage have more impact than those expressed in an absolute way.

Again, this is a matter of reference level. If an attribute is expressed as a
proportion or percentage, the implicit reference level is 100 %, and one can see
how far from the reference level is the value under consideration. This explains why
people prefer a small cup overflowing with ice cream rather than a half-filled big



6.3 Affect, Bipolarity and Reference Levels 339

cup, even if they contain exactly the same quantity of ice cream, because the size
of the cup fixes the reference level. The following experiment done by Slovic [308]
illustrates this phenomenon.

Example 6.16 Two groups of people are asked if they would support an airport-
safety-measure expected to save lives. The response scale ranged from 0 (would not
support at all) to 20 (very strong support). In the first group, the safety measure is
supposed to save 150 lives, while in the second group, the safety measure is said
to save a portion of 150 lives, expressed in percentage. The results are summarized
in Table 6.2 below. They show that saving a percentage of 150 lives receives more
support than does saving 150 lives. Saving 150 lives is diffusely good, and therefore
is not easily evaluable, whereas saving 98 % of 150 lives appears to be clearly very
good (and therefore evaluable) because it is very close to the upper bound. Þ

Potential benefit

Save 150 lives Save 98 % Save 95 % Save 90 % Save 85 %

Mean 10.4 13.6 12.9 11.7 10.9

Median 9.8 14.3 14.1 11.3 10.8
Table 6.2 Support on a [0-20]-scale for an airport-safety-measure

6.3.3 Bipolar and Unipolar Scales

The above considerations oblige us to revisit the notion of scale as established in
Sect. 6.2.1, in order to incorporate bipolarity and reference levels. We consider again
a set A of objects endowed with a complete preorder <, and we suppose that a
(ordinal) scale f W .A;</ ! .R;>/ exists (Theorem 6.4).

A neutral level is an element in A denoted by O such that for every a 2 A, if
a  O, then object a is considered to be “good” by the decision maker (positive
affect), and if a 
 O, then the object is considered to be “bad” (negative affect).
It is convenient to fix f .O/ D 0. If A has a neutral level, we say that the scale f is
bipolar, otherwise it is unipolar.

Example 6.17 Binary relations stemming from pairs of opposite words in natural
language and related to affect give rise to a bipolar scale. This is clearly the
case for the relations “more attractive than,” “better than,” “preferred than,” where
the corresponding pairs of opposite words are “attractive/repulsive,” “good/bad”
and “like/dislike.” On the other hand, binary relations like “more likely than,”
“more prioritary than” and “belongs more to category C than” do not clearly
exhibit a neutral level, because even if the two first of them are related to pairs
of opposite words (“likely/unlikely,” “prioritary/secondary”), these words are not
exactly opposite (“unlikely” means absence of likelihood rather than an opposite
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notion of likelihood, and similarly for “secondary,” which indicates a low level of
priority) and are not related to affect. As for the last example, this is also a case
where we have absence of a property (an object does not belong to category C)
rather than the existence of the opposite notion of membership. Þ

We say that the scale f is bounded from above if there exists a greatest element
1l 2 A; i.e., such that 1l < a for all a 2 A. We can fix for convenience f .1l/ D 1.
Similarly, f is a scale bounded from below if there exists a least element in A, that
is, an element a 2 A such that a < a for every a 2 A. When the scale is unipolar, the
least element is denoted by O, and we take the convention f .O/ D 0. Otherwise, for
bipolar scales, we denote it by �1l, and take the convention f .�1l/ D �1.

Example 6.18 (Example 6.17 continued) The above bipolar scales are neither
bounded from above, nor from below in general, because it is always possible to
find objects that are more (or less) attractive than, better than (or worse than),
more (or less) preferred than a given object. The relations “likely/unlikely” and
“belongs more to the category C than” yield scales that are bounded from below. The
least elements correspond to objects which, respectively, never occur (impossible
event), and do not belong to the category C (i.e., they do not possess any feature
characterizing category C). By contrast, the relation “more prioritary than” does not
yield a least element in general, because it is possible to find objects that are less
prioritary than a given one. Þ

We have seen that in many cases, scales are not bounded, and especially when
dealing with binary relations that are used in a context of decision making: “more
attractive than,” “better than,” “preferred than.” However, Sect. 6.3.2 has taught
us that reference levels (indicating what the decision maker means by a “good”
element) are necessary; without them the corresponding attributes are not actually
used in the process of decision making. The reference level should concern an object
that is considered to be satisfactory regarding the binary relation <, in the sense
that the decision maker would be quite satisfied if he could obtain it, even if better
elements could exist. The existence of such a level, whose definition may appear as
imprecise, is one of the fundamental theses defended/supported by Herbert Simon8

in his theory of bounded rationality [271, 305, 306]. The main idea of this theory is
that in a real situation, an agent is not able to find an optimal alternative or solution
of a decision problem (e.g., chess, search for food by an animal, etc.) in the strict
mathematical sense, because of limited resource (mainly time and energy, but also
information, intelligence, memory, etc.), but the search for a solution will stop as

8Herbert Alexander Simon (Milwaukee, 1916 – Pittsburgh, 2001) is an American economist and
sociologist, who studied also political science and cognitive psychology. This led him to construct
a theory of human behavior in decision making (Administrative behavior, 1947). Very early
convinced of the importance of computers, he was one of the pioneers of artificial intelligence.
He was awarded the Nobel Prize in economics in 1978.
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soon as the agent has found a satisficing9 solution; i.e., bringing a sufficiently high
level of satisfaction. Quoting Samuel Eilon,

Optimizing is the science of the ultimate; Satisficing is the art of the feasible.

We denote the satisfactory level as defined above by 1l. In the case of a bipolar
scale, we assume by symmetry the existence of a nonsatisfactory level denoted by
�1l, and take the same convention as above: f .1l/ D 1, f .�1l/ D �1.

6.4 Building Value Functions with the MACBETH Method

6.4.1 The MACBETH Method

The MACBETH method (Measuring Attractiveness by a Categorical Based Eval-
uation TecHnique) is due to Bana e Costa and Vansnick (see, e.g., [13–16]), and
permits to construct an interval scale from information on preference and intensity
of preference given by the decision maker.

Let A be a finite set of objects. The decision maker is asked for each pair .a; b/ 2
A2 the following question:

Is object a more attractive than b? (yes/no)

If the answer is “yes,” then we set aPb. If neither aPb nor bPa hold, a and b are
considered to be indifferent, which is denoted by aC0b. If aPb, a second question is
asked to the decision maker:

Is the difference of attractiveness between a and b very weak, weak, moderate,
strong, very strong, extreme? (choose only one category10)

These six categories define six binary relations C1 (corresponding to “very
weak”),. . . , C6 (corresponding to “extreme”). Together with C0, their union forms
a complete binary relation on A, which we denote by <. The asymmetric part  is
given by P D C1 [ � � � [ C6, while the symmetric part � is C0.

The first question pertains to ordinal measurement and yields <. If it is transitive,
we know from Theorem 6.4 that there exists f W A ! R representing <. The
second one is related to difference measurement. More precisely, the numerical
representation f should satisfy

aCkb and cCk0 d; k > k0 , f .a/ � f .b/ > f .c/� f .d/: (6.6)

Bana e Costa and Vansnick [14] have shown that the existence of a function f
representing < and satisfying (6.6) is equivalent to the existence of real numbers

9Word coined by H. Simon, as a contraction of “satisfying” and “sufficing.”
10In later versions, it is allowed to choose several categories, provided they are contiguous [13].
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0 D t1 < � � � < t6 such that

aPkb , f .a/ > f .b/C tk .k D 1; : : : ; 6/ (6.7)

with Pk D Ck[� � �[C6. Applying a general result of Doignon [92], Bana e Costa and
Vansnick show the following result, for which we need to introduce some additional
concepts. Considering binary relations R1; : : : ;Rm on a finite set A, a cycle is a
sequence

x1Qx2; x2Qx3; : : : ; xj�1Qxj; xjQx1

where Q D R1 [ � � � [ Rm [ Rcd
1 [ � � � [ Rcd

m , and Rcd
k is the codual of Rk, defined by

xRcd
k y if and only if not.yRkx/. A m-cyclone is a union of at most m cycles, and we

say that a cyclone is balanced if for every k D 1; : : : ;m, there is the same number
of pairs in Rj and in Rcd

j .
Then, a function f representing < and satisfying (6.6) exists if and only if no m-

cyclone w.r.t. P1; : : : ;P6 is balanced, where m is the number of nonempty relations
among C1; : : : ;C6, and whenever aC0b; a  c and d  a, we have aCkc , bCkc
and dCka , dCkb for every k D 1; : : : ;m. This condition being difficult to check
in practice, a linear program can be used to check the existence of the thresholds
t1; : : : ; t6 directly.

Once the existence of f is ensured, it is possible to get such a function by linear
programming. However, the solution is not unique in general, and each value f .a/
for a 2 A lies in an interval. The decision maker has to fix f .a/ for any a 2 A, and
once this is done, f is an interval scale on A (see all details in [13]).

6.4.2 Determination of the Value Functions

The MACBETH method can be applied to determine the value functions ui,
i D 1; : : : ; n. Besides, we suppose that for each attribute Xi, we have determined
beforehand its neutral level Oi (supposing Xi underlies a bipolar scale, otherwise
take Oi as the lower bound of Xi), as well as its satisfactory level 1li, and the
unsatisfactory level �1li, in case of a bipolar scale. Recall that <i is the preference
relation on Xi, induced by < (unambiguously defined by weak independence).

All value functions being determined separately, we can focus on a single
attribute Xi. We distinguish the unipolar and bipolar cases.

Unipolar Case We consider the set of alternatives

QXi D f.xi;O�i/ W xi 2 Xig � X

and select a finite set A from it containing the alternatives ON and .1li;O�i/. The
MACBETH method is applied to the set A, and as a result, an interval scale f is
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obtained. Since f is defined up to a positive affine transformation, it suffices to
arbitrarily fix the value of f on two points in order to fix f . We set

f .ON/ D 0; f .1li;O�i/ D 1;

and define the value function ui by

ui.xi/ D f .xi;O�i/ ..xi;O�i/ 2 A/;

which implies ui.Oi/ D 0, ui.1li/ D 1.

Bipolar Case We proceed similarly but distinguish the positive and negative sides,
and introduce

QXC
i D f.xi;O�i/ W xi 2 Xi; xi <i Oig

QX�
i D f.xi;O�i/ W xi 2 Xi; xi 4i Oig

and select finite sets AC;A� from them, containing respectively .1li;O�i/ and
.�1li;O�i/, and both containing ON . Applying the MACBETH method on AC;A�,
interval scales f C; f � are obtained, which are fixed by setting

f C.ON/ D f �.ON/ D 0; f C.1li;O�i/ D 1; f �.�1li;O�i/ D �1;

and define the value function ui by

ui.xi/ D
(

f C.xi;O�i/; if xi <i Oi

f �.xi;O�i/; if xi 
i Oi:
(6.8)

In both cases, interpolation methods could be used for determining ui on the
entire set Xi.

Note that all value functions vanish on the corresponding neutral levels, which
correspond to the same alternative ON , and they are equal to 1 on the satisfactory
levels. Since these levels have an absolute meaning, in the sense that the decision
maker feels the same intensity of satisfaction with them, the value functions are said
to be commensurate.

Remark 6.19 Strictly speaking, in the bipolar case, the value function ui given by
(6.8) cannot be considered as an interval scale, because it has three fixed values, on
1li, Oi and �1li respectively. In fact, ui comes from two independent interval scales,
one being defined for levels on the positive side, and the other for levels on the
negative side. Therefore, differences of preference on the positive side cannot be
compared with differences of preference on the negative side through ui. }
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6.5 Summary of the Construction of Value Functions

At this point, we have achieved the construction of the value functions u1; : : : ; un.
We have presented two radically different methods to do this:

(i) Difference measurement: under the assumption of weak difference indepen-
dence, value functions u1; : : : ; un can be obtained independently by difference
measurement applied on the attributes X1; : : : ;Xn, provided the conditions of
Theorem 6.11 are fulfilled. No commensurateness is needed between the ui’s,
and therefore there is no need of reference levels.

(ii) MACBETH method: value functions u1; : : : ; un are obtained separately as
interval scales built on special sets of alternatives QX1; : : : ; QXn, which need the
determination of two reference levels: the neutral and the satisfactory levels.
Weak difference independence is not required, however, conditions (6.7) of
difference measurement must hold, and can be checked by a linear program.
Commensurateness is necessary, and is ensured by imposing equality of the
value functions on the reference levels.

Supposing the value functions to be determined, it remains to build the aggregation
function F.

6.6 The Weighted Arithmetic Mean as an Aggregation
Function

Most of the methods in MCDM use for F the weighted arithmetic mean, putting
weights w1; : : : ;wn on criteria in order to represent their importance. However, in
many situations, the weighted arithmetic mean gives counterintuitive results.

Consider three alternatives a; b; c evaluated on two attributes, as follows:

u1.a1/ D 0:45; u1.b1/ D 0; u1.c1/ D 1

u2.a2/ D 0:45; u2.b2/ D 1; u2.c2/ D 0:

If we assign the value 1 to the satisfactory level, we see that alternative b is
satisfactory on the second criterion but not on the first one, while it is the opposite
for alternative c. If both criteria are considered important by the decision maker,
neither b nor c are acceptable, and a could appear as the best option because it is
balanced on both criteria, with a value that is, although not at a satisfactory level,
still acceptable. Surprisingly, no weighted arithmetic mean is able to represent the
preference a  b, a  c: letting w1;w2 be the weights on criteria 1 and 2, with
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w1;w2 > 0 and w1 C w2 D 1, we get

0:45.w1 C w2/ > w2

0:45.w1 C w2/ > w1;

which is impossible to satisfy since w1 C w2 D 1.
This example is not an isolated case, but is a well-known phenomenon in

multiobjective optimization, where it is known that the weighted arithmetic mean
is unable to explore the concave parts of the Pareto frontier.11 This can be easily
explained on Fig. 6.3, with two criteria.

u1

u2

0

a

b

Fig. 6.3 Red points indicate the Pareto frontier, and the dashed line indicates its convex hull.
Alternative b is in the concave part of the frontier, so that maximizing a weighted arithmetic mean
(as represented by a straight line moving upwards) can only yield one of the red points on the
convex hull as an optimal solution (in this case, a will be obtained)

Another drawback of the weighted arithmetic mean is that some simple and
intuitive ways of aggregating scores cannot be handled, for example veto criteria.
Roughly speaking, saying that criterion 3 is a veto means that whatever good
scores an alternative obtains on other criteria, a bad score on criterion 3 cannot
be compensated and the alternative receives an overall bad score. However, the
weighted arithmetic mean is compensatory, in the sense that even if the score on
criterion 3 is 0, any overall score can be obtained by taking a sufficiently high score
on another criterion whose weight is sufficiently high.

The veto example is a particular case of interaction between criteria: criteria
are interacting whenever their rôle and effect on the overall score are mutually
dependent (see Sect. 6.10 for a rigorous definition). For example, the decision
maker may desire that if criterion 3 is satisfied, then criterion 2 is not important,
otherwise criterion 2 is important. Clearly, the weighted arithmetic mean is unable

11The Pareto frontier of a set of points A is the set of its undominated points, that is,
fa 2 A W6 9b 2 A; b  ag.
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to represent such effects, because weights are fixed and pertain to a single criterion.
The following example, borrowed from [161], illustrates this phenomenon.

Example 6.20 (Evaluation of students) Suppose that students in some faculty of
sciences are evaluated in mathematics (M), physics (P) and literature (L), among
other topics. Since the evaluation is done in a faculty of sciences, mathematics and
physics should receive a more important weight than literature. However, we may
want to take into account the two following requirements:

(i) It is observed that in general, students good in mathematics are also good
in physics, and vice versa, because both subjects require skills in abstract
formalization and calculus, etc. Therefore, students having good marks in both
mathematics and physics should not be overevaluated.

(ii) Literature should not be considered to be negligible, because it is important for
general education, and moreover a good student should be balanced in sciences
and humanities. Therefore, a bad mark in literature should be penalized and not
compensated by good marks in sciences.

These are examples of interacting criteria, where their weight of importance is
depending somehow on the scores of the criteria. Þ

6.7 Towards a More General Model of Aggregation

If we return to our example in the beginning of Sect. 6.6, the inability of the weighted
arithmetic mean to represent the preference comes from the fact that weights are put
on isolated criteria. Clearly, if the decision maker has a preference for balanced
alternatives rather than for unbalanced ones, this suggests that there is some weight
w12 on the group of criteria 1 and 2, which is significantly greater than weights
w1;w2 on individual criteria, or more exactly, greater than their sum w1 C w2.

Generalizing this idea for n criteria, one would define a weight for each group
of criteria, or at least for each group where it is significant to do so (i.e., where the
sum of weights of criteria in a group does not represent the overall importance of
this group).

This being taken for granted, it remains to determine these weights. In the case
of the classical weighted arithmetic mean with weights w1; : : : ;wn on individual
criteria, we deduce immediately from the determination of the value functions by
the MACBETH method (Sect. 6.4.2) that

u.1li;O�i/ D F.ui.1li/; u�i.O�i// D F.1i; 0�i/ D wi .i 2 N/:

Hence, importance weights correspond to the overall score of alternatives being
satisfactory on a single criterion and neutral elsewhere. We generalize this view by
considering alternatives being satisfactory on several criteria. We distinguish the
unipolar and bipolar cases.
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6.7.1 The Unipolar Case

We consider binary alternatives, i.e., of the form .1lA;O�A/ with A � N, and apply
the MACBETH method to determine their overall score. Specifically, we set

A D f.1lA;O�A/ W A � Ng

and applying MACBETH on A, as a result we get an interval scale that is nothing
but the overall value function u, which we fix arbitrarily as follows:

u.ON/ D 0; u.1lN/ D 1: (6.9)

This is related to the aggregation function F as follows:

u.1lA;O�A/ D F.uA.1lA/; u�A.O�A// D F.1A/ .A � N/: (6.10)

Observe that the above equation determines the unknown function F on all vertices
of the hypercube Œ0; 1�N . Moreover, increasingness of F leads to

A � B ) u.1lA;O�A/ 6 u.1lB;O�B/: (6.11)

By performing the change of notation u.1lA;O�A/ ! 	.A/, where 	 W 2N ! R

is a set function, we realize by (6.9) and (6.11) that 	 is a normalized capacity on
N. Hence F.1A/ D 	.A/, so that F is an extension of 	, and we know by Chap. 4
that the Choquet integral and the Sugeno integral are possible candidates for F [see
Lemma 4.9 and Theorem 4.43(iii)].

In the sequel of this section, we show that the Choquet integral is in a sense the
most natural candidate.

The determination of F on the whole hypercube Œ0; 1�N (and possibly outside)
knowing its value on the vertices can be seen as an interpolation problem. Among all
methods of interpolation, the linear interpolation is the simplest one. Note however
that our problem of interpolation is multivariate: the function F has n variables, and
unlike the usual case of univariate interpolation, it is not obvious how to choose
for a given x 2 Œ0; 1�n the interpolating vertices, the only condition being that the
convex closure of the chosen vertices contains x. Figure 6.4 shows that even with
two variables, there are several possibilities. Of course, at least n C 1 points are
necessary to interpolate F at x (unless x lies on the boundary of the hypercube), and
in the case of n C 1 points, we say that the interpolation is parsimonious. In this
case, the convex region spanned by the vertices is a simplex. If all the 2n vertices are
used, one speaks of multilinear interpolation. Even if restricting to parsimonious
interpolation, Fig. 6.4 shows that there are still several possibilities. It is however
easy to see that only one of them can yield an interpolation, namely the left one.
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Fig. 6.4 Interpolation for x with the vertices of Œ0; 1�2: three possibilities. Vertices used for the
interpolation are in red, and their convex closure is in yellow

Indeed, in this case the interpolation reads, noting that F.0; 0/ D 0:

F.x1; x2/ D 0C .˛1x1 C ˛2x2/F.0; 1/C .ˇ1x1 C ˇ2x2/F.1; 1/:

Taking .x1; x2/ D .0; 1/ and .1; 1/ yields the following two triangular systems

˛2 D 1; ˇ2 D 0

˛1 C ˛2 D 0; ˇ1 C ˇ2 D 1

whose unique solution yields the following interpolation formula:

F.x1; x2/ D .x2 � x1/F.0; 1/C x1F.1; 1/ .0 6 x1 6 x2 6 1/: (6.12)

Remembering that F.0; 1/ D 	.f1g/ and F.1; 1/ D 	.f1; 2g/, one recognizes in
(6.12) the Choquet integral of the vector x w.r.t. 	.

On the other hand, the interpolation in the center figure reads

F.x1; x2/ D .˛1x1 C ˛2x2/F.0; 1/C .ˇ1x1 C ˇ2x2/F.1; 0/C .�1x1 C �2x2/F.1; 1/:

Taking alternately .x1; x2/ D .0; 1/, .1; 0/ and .1; 1/, we find the following three
systems:

˛2 D 1; ˇ2 D 0; �2 D 0

˛1 D 0; ˇ1 D 1; �1 D 0

˛1 C ˛2 D 0; ˇ1 C ˇ2 D 0; �1 C �2 D 1

which have clearly no solution. The reason is that vertex .0; 0/ does not belong to
this region, hence the linear system has one equation too many.

In the general case, it can be shown that the only valid partitioning of the
hypercube into simplices is given by the nŠ canonical simplices Œ0; 1�n� (Sect. 4.5.1),
where � is any permutation on Œn�. As suggested by the case n D 2, one finds the
following result.
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Theorem 6.21 (The Choquet integral as a parsimonious linear interpolator)
The parsimonious linear interpolation using the nŠ canonical simplices yields the
Choquet integral:

F.x/ D
Z

x d	; .x 2 Œ0; 1�n/

where 	.A/ D F.1A/ for all A � N.

This result was shown by Singer [307] (Remark 2.89; see also Grabisch et al. [177,
Proposition 5.25]).

6.7.2 The Bipolar Case

We consider now alternatives mixing the three reference levels Oi; 1li;�1li on the
various criteria. As a general model considering any combination of these three
levels would be complicated, we may make two simplifying assumptions:

(i) There is independence between the negative and the positive parts. By this,
we mean that the contribution of the positive part adds independently to the
contribution of the negative part; i.e., the overall value function u would satisfy,
for any disjoint A;B � N,

u.1lA;�1lB;O�.A[B// D u.1lA;O�A/C u.�1lB;O�B/:

(ii) There is symmetry between the positive and the negative parts, which means
that the score of the binary alternative .�1lA;O�A/ is just the opposite of the
score of .1lA;O�A/:

u.�1lA;O�A/ D �u.1lA;O�A/ .A � N/:

If both assumptions hold, then we obtain

u.1lA;�1lB;O�.A[B// D u.1lA;O�A/� u.1lB;O�B/ .A;B � N;A \ B D ¿/:

Defining the capacity 	 by 	.A/ D u.1lA;O�A/ as for the unipolar case and
performing a parsimonious interpolation, the positive quadrant yields the Choquet
integral, and we see that the aggregation function F obtained on Œ�1; 1�n is nothing
but the symmetric Choquet integral (4.10):

F.x/ D LZ
x d	 D

Z

xC d	�
Z

x� d	 .x 2 Œ�1; 1�n/;

with xC D x _ 0 and x� D .�x/C the positive and negative parts of x [see (4.9)].
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Nothing ensures that the symmetry assumption is satisfied in practice, though.
What do we obtain with the sole independence assumption? In this case, we have to
apply the MACBETH method one time for the binary alternatives as for the unipolar
case, and a second time for the negative binary alternatives .�1lA;O�A/, yielding
two interval scales uC; u�, fixed arbitrarily as follows:

uC.ON/ D u�.ON/ D 0; uC.1lN/ D 1; u�.�1lN/ D �1:

This gives two normalized capacities 	C; 	� on N defined by

	C.A/ D uC.1lA;O�A/; 	�.A/ D �u�.�1lA;O�A/ .A � N/:

Applying the parsimonious interpolation on the positive and the negative quadrants,
one obtains two independent Choquet integrals, and the aggregation function F
reads

F.x/ D
Z

xC d	C �
Z

x� d	� .x 2 Œ�1; 1�n/: (6.13)

Remark that this model has the same form as PT, the prospect theory model used
in decision under uncertainty (5.24). Also, the (asymmetric) Choquet integral is
recovered when 	� D 	C, the conjugate of 	C [see (4.12)], while the symmetric
Choquet integral is recovered with 	� D 	C.

Finally, what if none of the independence and symmetry assumptions is satisfied?
This case can arise in practice, when the decision behaviors are different in the
positive and negative sides. The following example illustrates this.

Example 6.22 (Evaluation of students (continued)) (Grabisch and Labreuche
[173]) Consider again the problem of evaluating students on three topics, which are
mathematics (M), physics (P), and literature (L), and suppose we have the following
four students to evaluate (marks are given on a 0–20 scale) Since students A and

Mathematics (M) Physics (P) Language (L)

Student A 14 16 7

Student B 14 15 8

Student C 9 16 7

Student D 9 15 8

B are good in mathematics and physics, more attention is given to literature. Then
the one point difference between A and B in language weighs more than the one in
physics, which leads to B  A. On the contrary, because students C and D are bad
in mathematics, more attention is given to physics, which yields C  D.
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First, this preference cannot be represented by a unipolar Choquet integral model.
Assuming that the above figures can be considered as scores, the preference B  A
yields, after simplification,

1 > 	.fM;Pg/C 	.fPg/

while C  D yields

	.fM;Pg/C 	.fPg/ > 1;

a contradiction. Considering 10 as the neutral level and translating the scale so that
the neutral level is equal to 0, we obtain the new table:

Mathematics (M) Physics (P) Language (L)

Student A 4 6 �3
Student B 4 5 �2
Student C �1 6 �3
Student D �1 5 �2

Applying (6.13), we obtain for the four students

u.A/ D F.4; 6;�3/ D 4	C.fM;Pg/C 2	C.fPg/� 3	�.fLg/
u.B/ D F.4; 5;�2/ D 4	C.fM;Pg/C 	C.fPg/� 2	�.fLg/

u.C/ D F.�1; 6;�3/ D 6	C.fPg/� 	�.fM;Lg/ � 2	�.fLg/
u.D/ D F.�1; 5;�2/ D 5	C.fPg/� 	�.fM;Lg/ � 	�.fLg/:

Preferences B  A and C  D yield

	�.fLg/ > 	C.fPg/
	C.fPg/ > 	�.fLg/;

again a contradiction. Þ

Hence, in some situations, we have to give up these two assumptions and con-
sider the general case. Then we deal with ternary alternatives, of the form
.1lA;�1lB;O�.A[B// for disjoint A;B � N. Applying the MACBETH method on the
set of ternary alternatives, we get an interval scale u, which can be fixed by letting
as before u.1lN/ D 1 and u.ON/ D 0. Increasingness of F yields

A � C;B � D ) u.1lA;�1lB;O�.A[B// 6 u.1lC;�1lD;O�.C[D//:
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Letting b.A;B/ D u.1lA;�1lB;O�.A[B// for every disjoint A;B, we have created a
mapping b W Q.N/ ! R, where

Q.N/ D f.A;B/ 2 2N � 2N W A \ B D ¿g 	 3N ;

being nondecreasing in first place and nonincreasing in second place, which is called
a bicapacity (Grabisch and Labreuche [171]). The definition of the Choquet integral
w.r.t. a bicapacity is obtained in the same way, as a parsimonious interpolation in
each region where a fixed subset of attributes takes value in the positive side. Its
explicit definition is (Grabisch and Labreuche [172]):

Z

x db D
Z

jxj dvx .x 2 Œ�1; 1�n/

where vx is a game on 2N defined by

vx.A/ D b.A \ NC;A \ N�/ .A 2 2N/

with NC D fi 2 N W xi > 0g and N� D N n NC.

Example 6.23 (Evaluation of students (continued)) Let us solve the representation
of preferences among students A, B, C, and D using bicapacities. Computing the
Choquet integral w.r.t. a bicapacity b yields:

u.A/ D F.4; 6;�3/ D 3b.fM;Pg; fLg/C b.fM;Pg;¿/C 2b.fPg;¿/
u.B/ D F.4; 5;�2/ D 2b.fM;Pg; fLg/C 2b.fM;Pg;¿/C b.fPg;¿/

u.C/ D F.�1; 6;�3/ D b.fPg; fM;Lg/C 2b.fPg; fLg/C 3b.fPg;¿/
u.D/ D F.�1; 5;�2/ D b.fPg; fM;Lg/C b.fPg; fLg/C 3b.fPg;¿/:

Preferences B  A and C  D yield

b.fM;Pg;¿/ > b.fM;Pg; fLg/C b.fPg;¿/
b.fPg; fLg/ > 0;

and there is no contradiction any more.

The symmetries in the different models are summarized in Fig. 6.5.
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Fig. 6.5 Case of a bipolar scale with n D 2: (a) symmetric model, (b) prospect theory model, (c)
general bipolar using bicapacities. Red circles indicate fictive alternatives determining the model,
values in parentheses indicate overall scores; scores not in yellow parts are computed from scores
in yellow parts

Remark 6.24

(i) As it can be seen, bipolarity introduces much complexity in the model and
its determination. While a unipolar model has a complexity of order 2n, the
complexity of a general bipolar model jumps to 3n, severely limiting their
usage in practice, at least for the fully general version;

(ii) The idea to define mappings on Q.N/ appeared in different domains. Let us
cite for example ternary voting games, which are f�1; 1g-valued bicapaci-
ties, introduced by Felsenthal and Machover [138] for modeling abstention
in voting games, and bicooperative games which are bicapacities without
the monotonicity assumption, introduced by Bilbao et al. [24]. Also, real-
valued mappings on Q.N/ are called biset functions or signed set functions,
and are used in combinatorial optimization (Fujishige [149, Sect. 3.5. (b)]).
Bicapacities have been proposed by Labreuche and Grabisch [220], and
developed in [171, 172]. There is already an important literature on the
topic, in the above-mentioned domains. We do not detail further this topic,
which is complex and not unified for the time being. Lastly, we mention that
the concept of bipolarization can be applied to mathematical structures like
semilattices, permitting the definition of very general Choquet-like functionals
(see Grabisch and Labreuche [174]).

(iii) As we have claimed before, our view of bipolarity follows the bipolar
univariate model of Osgood et al. The other view, namely the unipolar bivariate
model, advocated by Cacioppo et al., has given rise to the notion of bipolar
capacity proposed by Greco et al. [186], which is a two-valued function on
Q.N/.

}
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6.8 The Multilinear Model

As shown in Sect. 6.7, the aggregation function F is obtained by interpolation on
the vertices of the hypercube Œ0; 1�n, and even if linear interpolation is chosen, still
several options are possible. The parsimonious linear interpolation, using the fewest
possible number of vertices, is an extreme case that leads to the Choquet integral.
The other extreme case is to take all vertices of the hypercube, which leads to the
multilinear model, given by

F.x/ D
X

A�N

F.1A/
Y

i2A

xi

Y

i2Ac

.1 � xi/

D
X

A�N

	.A/
Y

i2A

xi

Y

i2Ac

.1 � xi/ .x 2 Œ0; 1�n/: (6.14)

At this point, it is interesting to view our interpolation problem of a function F
known on the vertices of the hypercube as an extension problem of 	, remembering
that 	.A/ D F.1A/ for every A � N. We then return to the problem of the extension
of pseudo-Boolean functions, studied in Sect. 2.16.4. This shows that F obtained
by the parsimonious linear interpolation is the Lovász extension of 	, while the
multilinear model is the Owen extension (2.83), denoted by f Ow

	 , whose alternative
expression using the Möbius transform of 	 is

f Ow
	 .x/ D

X

A�N

m	.A/
Y

i2A

xi .x 2 Œ0; 1�n/: (6.15)

The following result shows that the multilinear model arises as the only solution
for F when one considers difference measurement under the weak difference
independence assumption instead of the MACBETH method with reference levels
on each attribute. Before, we need the following definition.

Definition 6.25 (Dyer and Sarin [120]) The set of attributes X1; : : : ;Xn is bounded
from above (respectively, bounded from below) if there exists an element 1li 2 Xi

(respectively, Oi 2 Xi) such that .1li; x�i/ < .xi; x�i/ (respectively, .xi; x�i/ <
.Oi; x�i/) for all xi 2 Xi, all x�i 2 X�i, and all i 2 N. The set of attributes is
bounded if it is bounded from above and from below.

This definition is similar to the foregoing definition of a bounded scale.12

Theorem 6.26 (Characterization of the Owen extension) Assume that the con-
ditions of Theorem 6.11 are fulfilled,13 i.e., there exists a value function u on X

12The readers should not confuse these bounds with the satisfactory and neutral levels introduced
for the MACBETH method: we are precisely in the case where we do not assume that they exist.
Moreover, no assumption of commensurateness is made here.
13See also Remark 6.12: the conditions for the positive difference model could be taken as well.
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representing the quaternary relation <� on X, and suppose in addition that the set
of attributes is bounded. Then <� satisfies weak difference independence if and only
if there exists a unique capacity 	 on N and value functions u1; : : : ; un unique up to
a positive affine transformation such that F is the Owen extension of 	.

This result is obtained by combining Corollary 2 of Dyer and Sarin [120] and
Theorem 6.3 of Keeney and Raiffa [205]. For convenience, we give a comprehensive
proof of it.

Proof The “if” part is left to the readers.
For the “only if” part, we know by Theorem 6.11 that u is defined up to a positive

affine transformation. Then observe that weak difference independence implies

u.xi; x�i/ D g.x�i/C h.x�i/u.xi; z�i/ .i 2 N/ (6.16)

for all xi 2 Xi; x�i; z�i 2 X�i, where g.x�i/ and h.x�i/ > 0 depend only on
x�i. Indeed, weak difference independence implies that the functions u.xi; x�i/ and
u.xi; z�i/ rank the differences in the same way, hence by Theorem 6.11 they should
be equal up to a positive affine transformation.

Furthermore, let us fix the scaling as follows:

u.1lN/ D 1; u.ON/ D 0:

Letting xi D Oi and z�i D O�i in (6.16) we get g.x�i/ D u.Oi; x�i/, hence (6.16)
becomes

u.x/ D u.Oi; x�i/C h.x�i/u.xi;O�i/ .i 2 N/: (6.17)

Define ui W Xi ! R by kiui.xi/ D u.xi;O�i/, with ki > 0 such that ui.1li/ D 1. Note
that ui.Oi/ D 0 so that ui is normalized, and we have ki D u.1li;O�i/.

Setting h0.x�i/ D kih.x�i/ > 0, (6.17) becomes

u.x/ D u.Oi; x�i/C h0.x�i/ui.xi/ .i 2 N/: (6.18)

Now, letting xi D 1li in (6.18) yields

u.1li; x�i/ D u.Oi; x�i/C h0.x�i/ui.1li/ .i 2 N/;

hence

h0.x�i/ D u.1li; x�i/� u.Oi; x�i/ .i 2 N/: (6.19)

Substituting into (6.18) and rearranging we get

u.x/ D u.1li; x�i/ui.xi/C u.Oi; x�i/
�
1 � ui.xi/

�
.i 2 N/: (6.20)
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Define the set function 	 W 2N ! R by 	.A/ D u.1lA;O�A/. Observe that h0.x�i/ >

0 for every x�i and every i 2 N permits to deduce from (6.19) that u.1lA;O�A/ 6
u.1lB;O�B/ whenever A � B. Hence, by the normalization conditions, we see that
	 is a normalized capacity on N.

The rest of the proof consists in repeatedly substituting (6.20) into itself for i D
1; : : : ; n, so that u disappears from the right hand side. In the first step, we substitute
(6.20) with i D 2 in (6.20) with i D 1:

u.x/ D u1.x1/
�
u.1l12; x�12/u2.x2/C u.1l1;O2; x�12/.1 � u2.x2//

�

C .1 � u1.x1//
�
u.O1; 1l2; x�12/u2.x2/C u.O12; x�12/.1 � u2.x2//

�

D u.O12; x�12/C �
u.1l1;O2; x�12/ � u.O12; x�12/

�
u1.x1/

C �
u.O1; 1l2; x�12/� u.O12; x�12/

�
u2.x2/

C �
u.1l12; x�12/� u.1l1;O2; x�12/ � u.O1; 1l2; x12/C u.O12; x�12/

�
u1.x1/u2.x2/;

where 12 stands for f1; 2g. This ultimately yields

u.x/ D
X

A�N;A¤¿
kA

Y

i2A

ui.xi/ (6.21)

with kA D P
B�A.�1/jAnBju.1lA;O�A/, ¿ ¤ A � N, and recalling that 	.A/ D

u.1lA;O�A/, we see that kA D m	.A/, the Möbius transform of 	. Then (6.21)
coincides with the expression of u where F is given by (6.15). ut
Remark 6.27

(i) An important consequence of the theorem is the following: the use of the
Choquet integral forbids the construction of the value functions separately
on each Xi. Attributes cannot be isolated, i.e., weak difference independence
does not hold, and commensurateness must be ensured between the attributes.
This fundamental fact can already be guessed from Formula (4.17), because
a reordering of the arguments a1; : : : ; an in increasing order implies that they
should lie on the same scale.

(ii) An axiomatization of the Choquet integral together with value functions,
similar to Theorem 6.26, was done by Labreuche [219]. Up to now, we are
not aware of any other attempt in this direction.

(iii) Theorem 6.26 is valid under the assumption that the set of attributes is
bounded. We have seen in Sect. 6.3.3 that this assumption does not always
hold, especially when preferences are involved. An examination of the proof
reveals that the upper and lower bounds are merely used as particular levels to
ensure normalization and the definition of 	. Hence, in the absence of lower
and upper bounds, the same result holds provided one chooses 1li;Oi so that
.1li; x�i/  .Oi; x�i/ for every x�i 2 X�i, where < is deduced from <� by
x < y if and only if xw <� yw for all w 2 X.
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However, it must be noted that, contrarily to the Choquet integral, the Owen
extension is not monotone in general when going outside Œ0; 1�n, as shown by
the following example: Take n D 2, with 	.f1g/ D 	.f2g/ D 0:9, then

f Ow
	

�1

2
;
1

2

�
D 1

4
0:9C 1

4
0:9C 1

4
D 0:7

f Ow
	 .3; 3/ D .�6/0:9C .�6/0:9C 9 D �1:8 < f Ow

	

�1

2
;
1

2

�
:

See [177, Proposition 5.39] for properties of the Owen extension as an
aggregation function.

(iv) The underlying assumptions of the multilinear model exclude the possibility
of considering bipolar scales. However, nothing prevents from defining a
bipolar version of (6.15). Indeed, the multilinear and Choquet integral are both
extensions of a capacity, using a different kind of interpolation; it suffices then
to replace the capacity by a bicapacity to get the bipolar multilinear model.

}

6.9 Summary on the Construction of the Aggregation
Function

(limited to the unipolar case) Our two methods to construct value functions on each
criterion have naturally led to two different aggregation functions F, both depending
on a capacity 	 on X, defined by 	.A/ D u.1lA;O�A/ for all A � N:

(i) The Choquet integral: it is obtained as the parsimonious linear interpolation of
F over the vertices of the unit hypercube, supposing that all value functions are
commensurate (obtained via the MACBETH method). Here, 1li;Oi, i 2 N, are
absolute reference levels, having the meaning of “satisfactory” and “neutral,”
respectively. It also corresponds to the Lovász extension of 	.

(ii) The multilinear model: it is obtained as the linear interpolation using all vertices
of the unit hypercube. Here, 1li;Oi, i 2 N, need not be commensurate and
should be taken as the upper and lower bounds on each attribute. However,
weak difference independence must be satisfied by <�. It also corresponds to
the Owen extension of 	.

These two aggregation functions being extensions of capacities, they should be able
to represent interaction between criteria. This is the topic of the next section.
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6.10 Importance and Interaction Indices

We recall from (6.10) that the value of the capacity	 for some set A � N represents
the overall score of the binary alternative .1lA;O�A/, and that F is an extension of 	.
Our aim is to study how the importance of criteria and the interaction among them
are captured by F, and because F is an extension of 	, in a first step we study how
to define the importance of criteria and their interaction through the capacity 	.

6.10.1 Importance and Interaction Indices for a Capacity

One may define the importance of a criterion as its effect on the overall score
of a binary alternative when this criterion becomes satisfied (i.e., its score has a
satisfactory level). As this effect may depend on the situation (i.e., which other
criteria are satisfied), one may consider all possible situations and make an average.

Specifically, consider a binary alternative .1lA;O�A/, where 1li;Oi, i 2 N, are the
satisfactory and neutral levels respectively (or the upper and lower bounds as well),
and A � N n i. Then the effect of i is measured by the difference of the scores of
.1lA[i;O�.A[i// and .1lA;O�A/, hence by 	.A [ i/ � 	.A/, which we may call the
marginal contribution of i to A, and is equal to�i	.A/, the derivative of 	 w.r.t. i at
A (see Sect. 2.5). It follows that the importance of i should be defined as the average
of �i	.A/ over A � N n i.

We have seen in Chap. 2, Remark 2.43, that two such kinds of quantities have
been defined, namely the Shapley value Sh.	/ and the Banzhaf value B.	/ of 	
(which could be called in this context Shapley and Banzhaf importance indices):

Sh
i .	/ D

X

S�Nni

sŠ.n � s � 1/Š
nŠ

�i	.S/ (6.22)

B
i .	/ D 1

2n�1
X

S�Nni

�i	.S/; (6.23)

for every i 2 N. Note that the Banzhaf value is the arithmetic mean of the first order
derivative, or giving a probabilistic interpretation, it is its expected value with the
uniform distribution over 2Nni. The Shapley value can be interpreted in a similar
way, remarking that

sŠ.n � s � 1/Š

nŠ
D 1

n

1
�n�1

s

� : (6.24)

One can obtain the numbers in (6.24) by taking the expectation in two steps, first by
drawing the size of the subset S � N n i with a uniform distribution, then by drawing
a subset of the given size with a uniform distribution.



6.10 Importance and Interaction Indices 359

An important property of the Shapley value is efficiency:

X

i2N

Sh
i .	/ D 	.N/;

a property that is not satisfied by the Banzhaf value. Its normalized version,
B.	/

P
i2N 

B
i .	/

, is of course efficient but loses linearity w.r.t. the capacity.

We turn to the modeling of interaction. Take two distinct criteria i; j 2 N. We
say that there is a positive interaction or synergy between i and j in the presence
of S � N n fi; jg if the satisfaction of both criteria has a greater effect in terms of
marginal contribution than the sum of their contributions taken separately; i.e.,

	.S [ fi; jg/� 	.S/ >
�
	.S [ i/� 	.S/

�C �
	.S [ j/ � 	.S/�;

which can be rewritten as

	.S [ fi; jg/� 	.S [ i/� 	.S [ j/C 	.S/ > 0: (6.25)

Similarly, there is negative interaction or synergy between i and j in the presence of
S if the converse inequality holds, which leads to

	.S [ fi; jg/� 	.S [ i/� 	.S [ j/C 	.S/ 6 0: (6.26)

The case of equality depicts a situation where the marginal contribution of both
criteria is exactly the sum of individual marginal contributions. In this case, we say
that there is independence between i and j in the presence of S. Remark that in
(6.25) and (6.26), the key quantity is nothing other than�fi;jg	.S/, the second-order
derivative of 	 at S.

It remains to define an index accounting for the overall interaction between i and
j in all situations, as an average of the second order derivatives. Mimicking what we
did for the importance index, we could consider averages corresponding to the same
kind of probabilistic interpretation pertaining to the Shapley and Banzhaf values,
and obtain the Shapley and Banzhaf interaction indices:

ISh
ij .	/ D

X

S�Nnfi;jg

sŠ.n � s � 2/Š

.n � 1/Š
�fi;jg	.S/ (6.27)

IB
ij .	/ D 1

2n�2
X

S�Nnfi;jg
�fi;jg	.S/: (6.28)

We recognize in (6.27) and (6.28) particular cases of the Shapley and Banzhaf
interaction transforms (Definitions 2.41 and 2.42), precisely:

ISh
ij .	/ D I	.fi; jg/; IB

ij .	/ D I	B .fi; jg/:
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Recall from Remark 2.43 that the Shapley and Banzhaf values are also particular
instances of these transforms, because Sh

i .	/ D I	.fig/ and B
i .	/ D I	B.fig/. It

follows that the Shapley and Banzhaf interaction transforms provide an adequate
tool for the representation of interaction and importance. In particular, these
transforms permit to define interaction indices for any group T of criteria, letting
ISh
T .	/ D I	.T/ and IB

T .	/ D I	B.T/.
A precise interpretation of the (Shapley) importance and interaction indices can

be obtained from the formula of the Choquet integral w.r.t. a 2-additive capacity,
which we present in Sect. 6.10.4.

Remark 6.28

(i) The Shapley and Banzhaf values are central concepts in cooperative game
theory, where they serve as a means to share among the players in N the benefit
	.N/ obtained from the cooperation of the members of N (see, e.g., Owen
[263], Peters [268]). Apart from the classical axiomatizations of these values by
their authors, numerous axiomatizations have been proposed (see Peters [268,
Chap. 17] for the most representative axiomatizations of the Shapley value,
including the classical one).

(ii) The first appearance of the interaction index for two criteria seems to be due to
Owen in the context of cooperative game theory, under the name of co-value
[261], but this notion seems to have gone unnoticed. It was rediscovered by
Murofushi and Soneda [253], and applied to multicriteria decision making.

}
The next section gives an approach of interaction from the point of view of the

aggregation function.

6.10.2 Importance and Interaction Indices for an Aggregation
Function

The material of this section is borrowed from [177, Sects. 10.3 and 10.4], to which
the readers are referred for more details.

Let us consider an n-ary aggregation function defined on some real interval
Œa; b�; i.e., a mapping F W Œa; b�n ! Œa; b�, being nondecreasing in each coordinate
and satisfying F.a; : : : ; a/ D a, F.b; : : : ; b/ D b. The total variation of F w.r.t.
coordinate i is the function

�iF.x/ D F.bi; x�i/� F.ai; x�i/ .x 2 Œa; b�n/:



6.10 Importance and Interaction Indices 361

Similarly, the second-order total variation of F w.r.t. coordinates i; j is the function

�ij F.x/ D �i.�jF.x// D �j.�iF.x//

D F.bij; x�ij/ � F.bi; aj; x�ij/� F.bj; ai; x�ij/C F.aij; x�ij/;

where ij stands for fi; jg.

Example 6.29 Taking basic aggregation functions with Œa; b� D Œ0; 1�, we find:

�ij min.x/ D
^

k¤i;j

xk > 0

�ij max.x/ D �1C
_

k¤i;j

xk 6 0

�ij

�1

n

nX

iD1
xi

�
D 0:

Þ

Generalizing the above definitions, the total variation of F w.r.t. K � N is the
function

�K F.x/ D
X

L�K

.�1/jLjF.aL; bKnL; x�K/ .x 2 Œa; b�n/: (6.29)

The interaction index of K � N on F is defined as the average on the whole domain
of the corresponding total variation:

IK.F/ D 1

.b � a/n

Z

Œa;b�n

�KF.x/

b � a
dx: (6.30)

The next theorem relates the definitions of interaction indices for capacities and for
aggregation functions.

Theorem 6.30 (Correspondence between interaction for capacities and for
aggregation functions) (Grabisch et al. [178]) Consider Œa; b� D Œ0; 1� and 	
a normalized capacity. The following holds.

(i) The interaction index of K � N for the Choquet integral (Lovász extension) is
the interaction transform at K:

IK

� Z

� d	
�

D I	.K/:
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(ii) The interaction index of K � N for the multilinear model (Owen extension) is
the Banzhaf interaction transform at K:

IK. f Ow
	 / D I	B.K/:

Proof

(i) Using (6.29) and the expression of the Lovász extension (2.96), we get

�K f Lo
	 .x/ D

X

L�K

.�1/jLjf Lo
	 .0L; 1KnL; x�K/

D
X

L�K

.�1/jLj X

T�NnL

�
m	.T/

^

i2TnK

xi

�

D
X

T�N

�
m	.T/

^

i2TnK

xi

� X

L�KnT

.�1/jLj D
X

T	K

�
m	.T/

^

i2TnK

xi

�
;

using Lemma 1.1(i). From (2.97), we see that �K f Lo
	 .x/ is the derivative of the

Lovász extension (the notation fortunately coincides!), so that the desired result
holds by Theorem 2.90.

(ii) On the one hand, we have, using (6.29) and (2.83)

�K f Ow
	 .x/ D

X

L�K

.�1/jLj f Ow
	 .0L; 1KnL; x�K/

D
X

L�K

.�1/jLj X

A�NnK

	..K n L/ [ A/
Y

i2A

xi

Y

i2Nn.A[K/

.1 � xi/:

(6.31)

On the other hand, using Lemma 2.83 and the definition of the derivative
(Sect. 2.5), we get:

@k f Ow
	

@xjK
.x/ D

X

A�NnK

�K	.A/
Y

i2A

xi

Y

i2Nn.A[K/

.1 � xi/

D
X

A�NnK

X

L�K

.�1/jKnLj	.A [ L/
Y

i2A

xi

Y

i2Nn.A[K/

.1 � xi/:

Letting L0 D K n L in (6.31) shows that �K f Ow
	 .x/ and

@k f Ow
	

@xjK
.x/ are identical,

and so are their integrals on Œ0; 1�n. We conclude by using (2.89).
ut
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Remark 6.31 The proof of Theorem 6.30 establishes that the total variation w.r.t K
of the Lovász and Owen extensions coincide with their (partial) derivatives w.r.t.
xjK . }

6.10.3 A Statistical Approach: The Sobol’ Indices

The concept of interaction has also been studied in statistics, and is based on the
analysis of variance (ANOVA) (Fisher and Mackenzie [142], Hoeffding [196]).
In this context, consider n independent random variables Z1; : : : ;Zn, with uniform
distribution on Œ0; 1�, and our aggregation function F as a multivariate function of
Z1; : : : ;Zn. We put Z D .Z1; : : : ;Zn/ and Y D F.Z/, the random output of F. Also,
we adopt the same notation as above with variables; i.e., ZS stands for .Zi/i2S, etc.
For the sake of clarity, we may specify on which variables the expectation is taken,
writing, e.g., EZi ŒY�, etc.

Any multivariate function can be decomposed in the following way (ANOVA
decomposition):

Y D F.Z/ D F¿ C
nX

iD1
Fi.Zi/C

X

i<j

Fij.Zi;Zj/C � � � C FN.Z/ D
X

S�N

FS.ZS/;

with

F¿ D EŒY�

Fi.Zi/ D EŒYjZi� � F¿

Fij.Zi;Zj/ D EŒYjZi;Zj� � Fi.Zi/� Fj.Zj/ � F¿

D EŒYjZi;Zj� � EŒYjZi� � EŒYjZj�C EŒY�

::: D :::

FS.ZS/ D EZ�S ŒYjZS� �
X

T
S

FT.ZT/ D
X

T�S

.�1/jSnTj
EZ�T ŒYjZT �

::: D :::

FN.Z/ D
X

T�N

.�1/jNnTj
EZ�T ŒYjZT �:

The property of this decomposition is that each term has zero mean, except the first
one, F¿. It follows that the variance of Y can be decomposed as follows:

VarŒY� D
X

¿¤S�N

VarŒFS.ZS/�:
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The first-order Sobol’ indices [314, 315] are the quantities VarŒFS.ZS/�

VarŒY� , although one
can omit the normalization factor. The next theorem establishes the close link
between Sobol’ indices and the Fourier transform (and consequently the Banzhaf
transform) for the multilinear model.

Theorem 6.32 (Relation between Sobol’ indices and the Fourier transform)
(Grabisch and Labreuche [176]) Consider the multilinear model f Ow

	 w.r.t. a
capacity 	. Then the (nonnormalized) Sobol index for a subset ¿ ¤ S � N is
given by

VarŒ. f Ow
	 /S� D 1

3s

�
b	.S/

�2
;

whereb	 is the Fourier transform of 	.

Proof We set for simplicity f D f Ow
	 . We compute

fS D
X

K�S

.�1/kE. f j ZSnK/ .S � N; jSj > 0/:

We have for any such S:

E. f jZSnK/ D
Z

Œ0;1�Nn.SnK/
f dzNn.SnK/ D

X

T�Œn�
m	.T/

Z

Œ0;1�Nn.SnK/

Y

i2T

zi dzNn.SnK/

D
X

T�Œn�
m	.T/

1

2jTn.SnK/j
Y

i2T\.SnK/

zi

D
X

L�NnS

X

T�S

m	.L [ T/
1

2jL[.T\K/j
Y

i2TnK

zi: (6.32)

It follows that

fS D
X

K�S

.�1/k
X

L�NnS

X

T�S

m	.L [ T/
1

2jL[.T\K/j
Y

i2TnK

zi

D
X

L�NnS

1

2l

X

T�S

m	.L [ T/
X

K�S

.�1/k 1

2jT\Kj
Y

i2TnK

zi:

Letting T 0 D T \ K, we have

X

K�S

.�1/k 1

2jT\Kj
Y

i2TnK

zi D
X

T0�T

.�1/t0 1
2t0

Y

i2TnT0

zi

X

K0�SnT

.�1/k0

„ ƒ‚ …
D0 except if SnTD;

:
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It follows that

fS D
X

L�NnS

1

2l
m	.L [ S/

X

T�S

.�1/t 1
2t

Y

i2SnT

zi: (6.33)

Observe that

X

T�S

.�1/t 1
2t

Y

i2SnT

zi D 1

2s

Y

i2S

.2zi � 1/;

hence we finally get by (2.74):

fS D .�1/s
Y

i2S

.2zi � 1/bv.S/: (6.34)

We obtain finally

EŒ f 2S � D
Z

Œ0;1�S

�Y

i2S

.2zi � 1/bv.S/
�2

dzS D 1

3s
.bv.S//2:

ut

6.10.4 The 2-Additive Model

Recall from Chap. 2 that a capacity 	 is 2-additive if its Möbius transform
(equivalently, its interaction transform) vanishes for subsets of cardinality greater
than 2:

m	.S/ D 0; I	.S/ D 0 .S � N; jSj > 2/

[see Definition 2.50 and Remark 2.51(ii)]. Therefore, such capacities are uniquely
determined through their (Shapley) importance indices and interaction indices for
pairs of criteria.

Considering F to be the Choquet integral, using Eq. (4.79), the overall score of
an alternative x 2 X when the capacity 	 is 2-additive can be written as follows:

u.x/ D
X

i; j W ISh
ij >0

.ui.xi/ ^ uj.xj//I
Sh
ij C

X

i; j W ISh
ij <0

.ui.xi/ _ uj.xj//jISh
ij j

C
X

i2N

ui.xi/
�
Sh

i � 1

2

X

j¤i

jISh
ij j
�
;
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where we have dropped .	/ in the importance and interaction indices. This
expression gives a very clear picture of the model:

(i) If interaction between i and j is positive, the aggregation of the scores on these
criteria is purely conjunctive: criterion i and criterion j must be satisfied in
order to get a satisfactory score. In other words, the decision maker is intolerant
w.r.t. these criteria, because both must be satisfied. Another way to interpret
this is to say that criteria i and j are complementary, which means that each
of them represents a necessary ingredient in the decision process, without any
possible compensation between them;

(ii) If interaction between i and j is negative, the aggregation of the scores on i and
j is now purely disjunctive: criterion i or criterion j must be satisfied to get a
satisfactory score. We may say that the decision maker is tolerant relatively to i
and j, because it is enough that one of them is satisfied. Another interpretation
is to say that the criteria are substitutable, in the sense that if i (respectively,
j) is not satisfied, it can be substituted with j (respectively, i), provided this
criterion is satisfied;

(iii) The computation of the overall score is obtained by summing three types
of terms: conjunctive terms for any pair of positively interacting criteria,
disjunctive terms for any pair of negatively interacting criteria, and a linear
term which is a weighted sum of all criteria. Observe that the weight of each
criterion in the latter term is equal to its importance index, diminished by half
the sum of all interaction magnitudes pertaining to this criterion.

More importantly, the overall score is obtained as a convex combination of
all these terms. Indeed, the coefficients of the conjunctive and disjunctive terms
are clearly positive. As for the linear term, using Theorem 2.45(iii), observe
that the monotonicity of 	 in terms of its interaction indices reduces to, by
2-additivity:

Sh
i C 1

2

X

j2L

ISh
ij � 1

2

X

j62L

ISh
ij > 0 .i 2 N;L � N n i/:

For a fixed i 2 N, taking L D f j 2 N n i W ISh
ij < 0g, we find that

Sh
i � 1

2

X

j¤i

jISh
ij j > 0:
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As a conclusion, all coefficients are nonnegative. It remains to show that they
sum up to 1. We have

X

i; j W ISh
ij >0

ISh
ij C

X

i; j W ISh
ij <0

jISh
ij j C

X

i2N

�
Sh

i � 1

2

X

j¤i

jISh
ij j
�

D
X

fi;jg�N

jISh
ij j C

X

i2N

Sh
i � 1

2

X

i2N

X

j¤i

jISh
ij j D

X

i2N

Sh
i D 1:

This result can be obtained also as a simple consequence of Theorem 2.65,
because by using transformation formulas between the Möbius transform
and the interaction transform, one can see that Eq. (2.61), giving the convex
decomposition of a 2-additive capacity, yields (4.79) just by applying the
Choquet integral on it.

The fact that the expression of u is a convex combination of conjunctive,
disjunctive and linear terms is particularly appealing for the explanation of the
model to the decision maker, because this gives a precise idea of how much
linear or nonlinear is the model, or how much conjunctive or disjunctive is the
model, and what are the terms in the model which are most important.

6.11 The Case of Ordinal Measurement

A close examination of the construction of our models, either based on Choquet
integral or the multilinear model, reveals that in one or the other, a kind of difference
measurement is used. This is perfectly clear with the multilinear model, because
it is based on the assumption of weak difference independence, a concept rooted
in difference measurement. In the case of the Choquet integral, the MACBETH
method forces the decision maker to think in terms of intensity of preference, which
is a disguised form of difference measurement: indeed, saying that a is strongly
preferred to b, while c is weakly preferred to d induces the fact that ab � cd.

The question is then: What happens if the conditions for difference measurement
(those in Theorem 6.11) are not fulfilled? Or if the decision maker is unable to
tell in a consistent way intensities of preference? In this situation we are back to
ordinal measurement: nothing more than “a is preferred to b” can be said, and as
a consequence, value functions should be considered to be ordinal scales, where
numbers have no cardinal meaning. This amounts to saying that the range of the
value functions is a totally ordered set .L;6/, either finite or infinite, without the
algebraic structure of the field of real numbers, but with only _ (supremum) and
^ (infimum) as algebraic operations. The consequence is, if we still want to adhere
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to the decomposable model (6.2), that the aggregation function F, now seen as a
mapping from Ln to L, must be built solely from the operations ^;_.14

6.11.1 The Emergence of the Sugeno Integral Model

A mapping F W Ln ! L that is an arbitrary finite combination of _;^ is called a
weighted lattice polynomial function [231]. These functions are a generalization
of lattice polynomial functions (see, e.g., Grätzer [185, Sect. I.4]), where some
variables are considered to be constants. Formally, the class WLP.LI n/ of weighted
lattice polynomial functions from Ln to L is inductively defined as follows:

(i) For any k 2 Œn� and any c 2 L, the projection x 7! xk and the constant function
x 7! c are elements of WLP.LI n/;

(ii) If p; q 2 WLP.LI n/, then p _ q; p ^ q 2 WLP.LI n/;
(iii) Every element of WLP.LI n/ is formed by finitely many applications of rules

(i) and (ii).

A function p 2 WLP.LI n/ is said to be idempotent if p.a; : : : ; a/ D a for every a 2
L. Assuming in addition that L is a complete lattice with top and bottom elements
denoted respectively by 1 and 0, p is endpoint-preserving if p.0; : : : ; 0/ D 0 and
p.1; : : : ; 1/ D 1.

The fundamental fact about (weighted) lattice polynomial functions is that they
can be expressed in disjunctive or conjunctive normal forms (see, e.g., Birkhoff [30,
Sect. II.5]). For any p 2 WLP.LI n/,

p.x/ D
k_

jD1

�
aj ^

^

i2Aj

xi

�
D

`̂

jD1

�
bj _

_

i2Bj

xi

�
;

for some appropriate k; ` 2 Œn�, aj; bj 2 L, and Aj;Bj � Œn�. Observe from this
formula that any weighted lattice polynomial function is necessarily nondecreasing
w.r.t. each variable. An equivalent form is:

p.x/ D
_

A�Œn�

�
˛.A/ ^

^

i2A

xi

�
D
^

A�Œn�

�
ˇ.A/ _

_

i2A

xi

�
; (6.35)

where ˛; ˇ W 2Œn� ! L are set functions. These set functions are not unique, and as
shown in [231], if L is a complete lattice, one can take ˛�.A/ D p.1A/, A � Œn�

14If L is finite, there is evidently no increasing function from Ln to L (unless jLj D 1), and few
nondecreasing functions. Therefore, in the finite case, one should consider mappings from Ln to
L0, where L0 has a cardinality sufficiently larger than jLj.
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as a particular function ˛. Based on this decomposition, the following fundamental
result is easily obtained:

Theorem 6.33 (Sugeno integrals are idempotent weighted lattice polynomial
functions) (Marichal [229, 231]) Suppose that the totally ordered set .L;6/ is
a complete lattice, and consider F W Ln ! L. The following propositions are
equivalent:

(i) There exists a unique normalized capacity 	 such that F.�/ D �R � d	;
(ii) F is an idempotent weighted lattice polynomial function;

(iii) F is an endpoint-preserving weighted lattice polynomial function.

Proof (i))(ii))(iii) is obvious. We prove (iii))(i). Let F satisfying the conditions
of (iii). We know that the disjunctive normal form of F can be written as

F.x/ D
_

A�Œn�

�
F.1A/ ^

^

i2A

xi

�
:

Letting 	.A/ D F.1A/, we observe by comparison with (4.67) that F is nothing but
the Sugeno integral. ut

As a consequence, the aggregation function F in the decomposable model must
be the Sugeno integral w.r.t. some normalized capacity:

uSug.x/ D �
Z

.u1.x1/; : : : ; un.xn// d	 .x 2 X/: (6.36)

It is important to note that the determination of the utility functions and capacity
cannot be conducted in the same way as for the Choquet integral, that is, with the
help of reference levels 1li;Oi, i 2 N, and in two steps, the first one consisting in the
determination of the ui’s and the second one in the determination of the capacity.
Indeed, for an alternative of the form .xi;O�i/, we have from (6.36):

uSug.xi;O�i/ D ui.xi/ ^ 	.fig/:

Then, if ui.xi/ > 	.fig/, the value of ui.xi/ cannot be observed because it is
hidden by 	.fig/, which acts like a threshold. A full description of a method of
determination of the ui’s and of the capacity based on reference levels is given in
[173, Sect. 5.4].

We now give a characterization result of the model given in (6.36), which does
not use reference levels. This result was given without proof by Greco et al. [187].
Later, Bouyssou et al. [37] have proposed a proof of this deep result. Greco et al.
introduced the following notion: < on X is said to be strongly 2-graded on attribute
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i 2 N if, for all x; y; z;w 2 X and all ai 2 Xi,

x < z
and

y < w
and

z < w

9
>>>>>=

>>>>>;

)
8
<

:

.ai; x�i/ < z
or

.xi; y�i/ < w:

The relation < is strongly 2-graded if it is strongly 2-graded for every attribute
i 2 N. The condition is rather complex, but can be explained relatively simply
when considering z D w: the strong 2-gradedness condition on attribute i induces a
partition of Xi into satisfactory and unsatisfactory elements, relatively to w. Indeed,
suppose that y < w, and suppose that .xi; y�i/ 6< w. Since we have .yi; y�i/ < w, it
means that level xi is not satisfactory enough w.r.t. w, while yi is. Now, there is no
worse level w.r.t. w than xi, because assuming in addition that .xi; x�i/ < w implies
by strong 2-gradedness that .ai; x�i/ < w for any element ai 2 Xi. Hence, in a sense,
xi belongs to the category of unsatisfactory elements of Xi while yi is a satisfactory
element.

Theorem 6.34 (Characterization of the Sugeno integral model) Let L D Œ0; 1�

and < be a binary relation on X. Then < can be represented by the Sugeno integral
model (6.36) if and only if it is a complete preorder that is strongly 2-graded, and
X=� has a countable order-dense subset.

The sufficiency is difficult to prove (see [37]), however one can easily explain the
necessity of the strong 2-gradedness condition. Suppose that there exist x; y; z;w 2
X and ai 2 Xi such that x < z < w, y < w, .ai; x�i/ 6< z and .xi; y�i/ 6< w, and let
us denote for simplicity �R .u1.x1/; : : : ; un.xn// d	 by S	.u.x//. From .yi; y�i/ < w
and .xi; y�i/ 6< w we obtain ui.xi/ < S	.u.w// [use (4.67)]. Since z < w, it follows
that S	.u.z// > S	.u.w// > ui.xi/. Now, x < z and S	.u.z// > ui.xi/ imply that
there exists A � N such that i 62 A, 	.A/ > S	.u.z// and uj.xj/ > S	.u.z// for all
j 2 A [again use (4.67)]. This implies S	.u.ai; x�i// > S	.u.z//, which contradicts
.ai; x�i/ 6< z.

6.11.2 Monotonicity Properties of the Sugeno Integral Model

Theorem 6.33 forces the use of the Sugeno integral if one wants to use the
(weakly) monotone decomposable model in a purely ordinal framework. This being
taken for granted, it appears nevertheless that the Sugeno integral model has a
poor discriminative power. This can already be seen from the strong 2-gradedness
condition, because it implies a rather coarse treatment of the attribute values. A more
striking example is the following fact: it may happen that improving an alternative
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on each attribute does not change the value of the Sugeno integral, as illustrated by
the next example.

Example 6.35 Consider n D 3 and an alternative x 2 X with vector of scores in
Œ0; 1� given by .0:1 0:5 0:7/. Take any normalized capacity	 satisfying	.f2; 3g/ D
0:5. Then

uSug.x/ D .0:1 ^ 1/ _ .0:5 ^ 0:5/ _ .0:7 ^ 	.f3g/ D 0:5;

because	.f3g/ 6 	.f2; 3g/ D 0:5. Then for x0 2 X with vector of scores .0:5 1 1/,
we obtain

uSug.x0/ D .0:5 ^ 1/ _ .1 ^ 0:5/ _ .1 ^ 	.f3g/ D 0:5:

Although x0 is far better than x on every attribute, its evaluation by the Sugeno
integral model is identical to the evaluation of x (see also Remark 5.26). Þ

This unpleasant behavior is an example of the peculiar properties of the Sugeno
integral with respect to monotonicity. It is worthwhile to study in detail this point,
and to this end, we recall and introduce some notions of monotonicity.

We use the notation a 6 b, a < b and a � b for two vectors a; b 2 Ln given
in Sect. 1.11.1. A function F W Ln ! L is nondecreasing (or monotone) if it is
nondecreasing w.r.t each variable; i.e., if a 6 b then F.a/ 6 F.b/, for any a; b 2 Ln.
It is increasing if a < b implies F.a/ < F.b/, and it is weakly increasing if it is
nondecreasing and a � b implies F.a/ < F.b/. Obviously, increasingness implies
weak increasingness, which implies nondecreasingness.

Example 6.35 has shown that the Sugeno integral is not weakly increasing in
general, but we know from Theorem 4.43(vi) that it is always nondecreasing. The
following result summarizes the monotonicity properties of the Sugeno integral.

Theorem 6.36 (Monotonicity properties of the Sugeno integral) Consider the
Sugeno integral w.r.t. a normalized capacity	 on N, both valued on a totally ordered
set L that is a complete lattice, with top and bottom elements 1, 0. The following
holds:

(i) The Sugeno integral is nondecreasing for every capacity 	;
(ii) The Sugeno integral is weakly increasing if and only if 	 is a 0-1-capacity;

(iii) The Sugeno integral is never increasing.

Proof

(i) is established in Theorem 4.43(vi).
(ii) Assume that 	 is 0-1-capacity. If a � b, we have mini2A ai < mini2A bi for

every nonempty A � N, which implies that

max
A W	.A/D1

�
min
i2A

ai

�
< max

A W	.A/D1

�
min
i2A

bi

�
:
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Using the fact that the Sugeno and Choquet integrals coincide for 0-1-
capacities [see Theorem 4.47(i)], it follows from Theorem 4.61 that the above
equation is nothing other than �R a d	 < �R b d	.

Conversely, assume that 	 is not a 0-1-capacity. Then there exists a
nonempty subset A � N such that 0 < 	.A/ < 1. Define a; b 2 Ln by

ai D
(
	.A/; if i 2 A

0; otherwise
; bi D

(
1; if i 2 A

	.A/; otherwise
:

Then a � b, and

�
Z

a d	 D 0 _ .	.A/ ^ 	.A// D 	.A/ D 	.A/ _ .1 ^ 	.A// D �
Z

b d	:

(6.37)
Hence, the Sugeno integral w.r.t. 	 is not weakly increasing.

(iii) Since jNj > 1, there exists a nonempty proper subset of N, say A. Defining
a; b 2 Ln with A like in (ii), we have a < b but equality of the integrals holds
by (6.37), showing that the Sugeno integral is not increasing.

ut
Remark 6.37

(i) These results were proved by Marichal [228]; see also Murofushi [249]. Our
exposition follows the latter reference.

(ii) What about the Choquet integral? We know from Theorem 4.24(vi) that
nondecreasingness holds. Murofushi [249] has shown that weak increasingness
always holds, while increasingness holds if and only if the capacity is strictly
monotone. The same results hold for the multilinear model [177, Proposi-
tion 5.39].

}

6.11.3 Lexicographic Refinement

Theorem 6.36 shows that the Sugeno integral model has a poor discriminative
power, in the sense that, for a fixed capacity 	 and value functions u1; : : : ; un, uSug

remains constant over large domains of X. As a consequence, many preference
relations on X cannot be represented by a Sugeno integral model. We refer the
readers to Rico et al. [274] for a detailed study of the abilities of the Sugeno integral
for the representation of preferences.

A possible solution for these drawbacks is to escape (at least for a while) from
the decomposable model, by refining the preference relation it induces through a
lexicographic procedure. Given two complete preorders <;<0, we say that <0 refines
< if whenever a  b, we have a 0 b, and <;<0 are distinct. We begin by giving the
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well-known lexicographic refinements of minimum and maximum, called leximin
and leximax [88, 248].

The leximin and leximax orderings on Ln, denoted respectively by <lmin, <lmax,
are defined as follows, for every a; b 2 Ln:

a <lmin b , .a.1/; : : : ; a.n// <lex .b.1/; : : : ; b.n//

a <lmax b , .a.n/; : : : ; a.1// <lex .b.n/; : : : ; b.1//;

where .�/ indicates a permutation of the indices so that the coordinates are in
nondecreasing order: a.1/ 6 a.2/ 6 � � � 6 a.n/, and <lex is the lexicographic order
(see Example 6.3). Note that a �lmin b , a �lmax b , a.i/ D b.i/ for all
i D 1; : : : ; n. It is easy to see that the leximin and the leximax orderings respectively
refine the preorders induced by the minimum and the maximum:

min
i

ai > min
i

bi ) a lmin b; max
i

ai > max
i

bi ) a lmax b:

It is important to note that the leximin and leximax orderings do not correspond
to some real-valued aggregation functions (see Example 6.3), hence they cannot
induce some decomposable model. However, a well-known fundamental fact is that
when L is finite, it is indeed possible to represent these orderings simply by means
of a sum. To see this, let us first consider the case of the ordering induced by the
maximum. Letting L D fl0; : : : ; lpg with l0 < � � � < lp, one can find a mapping
 W L ! R such that

n
max
iD1 ai >

n
max
iD1 bi )

nX

iD1
.ai/ >

X

i

.bi/:

Indeed, it suffices to take

.li/ D mi .i D 0; : : : ; p/;

with m any integer greater than n. Such a mapping is an example of superincreasing
function; i.e., satisfying .lj/ >

Pj�1
kD0 .lk/, j D 1; : : : ; p. It is easy to check that

the same function  can do the job for the leximax, and even more we have that

a lmax b ,
nX

iD1
.ai/ >

X

i

.bi/;

so that the real-valued function
Pn

iD1 .�/ is a numerical representation of <lmax. A
similar construction can be done for the leximin, using the function  .li/ D 1� mi.

Going one step further, we combine the leximax and leximin orderings for
ordering matrices. For example, the leximin could be used to order the rows, then
the leximax is used to order the matrices. Denoting this order by <lmax.<lmin/, by the
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previous considerations it clearly refines the maxmin ordering <maxmin on matrices
defined by:

A <maxmin B , n
max
iD1

m
min
jD1 aij > n

max
iD1

m
min
jD1 bij;

where A;B are n � m-dimensional matrices with entries aij; bij 2 L.

Example 6.38 Take n D 4;m D 3 and the matrices A;B with integer values:

A D

2

6
6
4

4 3 2

2 4 5

2 3 1

2 5 1

3

7
7
5 ; B D

2

6
6
4

1 2 4

5 1 2

2 3 4

2 5 4

3

7
7
5 :

Clearly, A �maxmin B because the maxmin of each matrix is 2. However, these
matrices can be distinguished by the <lmax.<lmin/ order. First, we order the rows in
increasing order according to the leximin. We obtain the matrices

A0 D

2

6
6
4

2 3 1

2 5 1

4 3 2

2 4 5

3

7
7
5 ; B0 D

2

6
6
4

1 2 4

5 1 2

2 3 4

2 5 4

3

7
7
5 :

We observe that the last rows are indifferent by the leximin: Œ2 4 5� �lmin Œ2 5 4�,
and so are the third and second rows. For the first row, we have Œ1 2 4� lmin Œ2 3 1�,
hence finally B lmax.<lmin/ A. Þ
The interest of this is that the Sugeno integral can be casted into this framework.
Indeed, as shown by (4.32) or (4.67), the computation of the Sugeno integral
amounts to a maxmin computation, with m D 2. Hence the <lmax.<lmin/ order refines
the Sugeno integral. Let us mention in addition that Dubois and Fargier [98] consider
yet a different formula for the Sugeno integral, writing:

�
Z

a d	 D
_

l2L

.l ^ 	.fi W ai > lg// .a 2 Ln/: (6.38)

However, note that the different equivalent formulas for the Sugeno integral, once
refined by this procedure, lead to different orderings, making the study of the
refinement of the Sugeno integral rather complex (see [98], as well as the literature
cited therein).
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As for the leximin and leximax orderings, when L is finite it is possible to
have a numerical representation of <lmax.<lmin/, and therefore of any refinement
of the Sugeno integral. Taking for example (6.38), we find that the numerical
representation is:

ElSug
L .a/ D

pX

kD0
�.lk/�.	.fi W ai > lkg// .a 2 Ln/;

with L D fl0; : : : ; lpg and � W L ! Œ0; 1� given by

�.l0/ D 0; �.lp/ D 1; �.lk/ D m

m2p�k ; k D 1; : : : ; p � 1;

with m an integer satisfying m > n. Note that this is close, but different, to a Choquet
integral. The question whether the Sugeno integral can be refined by a Choquet
integral is addressed in detail in [98]. It is true that this is possible, but the <lmax.<lmin/

ordering cannot be represented by a Choquet integral.



Chapter 7
Dempster-Shafer and Possibility Theory

The last chapter presents an application of a particular class of normalized capacities
(belief and plausibility measures) to the representation of uncertainty. This class
has very specific properties and can be obtained through very different approaches
(upper and lower probabilities, evidence theory and random sets, at least). Moreover,
there exists a subclass of particular interest, the class of possibility and necessity
measures, which has lead to a whole theory, called “possibility theory”. For these
reasons, belief and plausibility measures (or functions, as we call them in this
chapter) occupy a central position among set functions, and similarly to Chap. 2,
we give here an in-depth study of their properties, providing nearly all proofs
of the results. Viewed as an alternative tool of modeling uncertainty, belief and
plausibility functions are close to probability measures in their usage. This is
why the topic of defining a conditional belief or plausibility measure/function is
of central importance. Section 7.5 is devoted to this topic, which happens to be
complex since several definitions are possible, all extending classical conditional
probabilities. The chapter ends with a generalization of belief functions, defined on
lattices (Sect. 7.8).

As additional reading, we recommend, apart from the original book of Shafer
[296], the monograph of Kramosil [216] (one of the few monographs entirely
devoted to belief functions, presented in a rigorous style and complete), Chaps. 5
and 6 of Kruse et al. [218], a collection of classic papers by Yager and Liu [353],
a recent paper of Dempster [78], and the monograph of Couso et al. on random
sets [62].

© Springer International Publishing Switzerland 2016
M. Grabisch, Set Functions, Games and Capacities in Decision Making,
Theory and Decision Library C 46, DOI 10.1007/978-3-319-30690-2_7

377



378 7 Dempster-Shafer and Possibility Theory

7.1 The Framework

Introducing what is commonly called Dempster-Shafer theory is not an easy task,
because as the name may already suggest, there is not a unique way of presenting
it: at least there are three different (although nearly equivalent) ways, namely, the
upper and lower probabilities of Dempster, the evidence theory of Shafer, and the
theory of random sets of Matheron and Kendall. Since each of them has its interest
and that finally one can pass from one representation to another one, we present all
three of them, and we mention in addition the probabilistic approach proposed by
Kramosil. In the remaining sections however, we will take as main representation
the evidence theory of Shafer, with slight modifications and generalizations.

7.1.1 Dempster’s Upper and Lower Probabilities

In 1967, Arthur P. Dempster [77] proposed the following framework. Let �;X be
two nonempty sets, and consider a correspondence� W � � X; i.e., a mapping from
� to 2X (also called a multivalued mapping). We suppose that�, the set of outcomes
of some random experiment, is endowed with a probability measure P defined on
an algebra B on � (set of measurable events). On the other hand, X is another set
of outcomes, where for the moment no probability measure is defined. X can be
viewed as the set of observations, the mapping � being the device for observing
outcomes of �. The fact that � is multivalued can be interpreted by saying that
the observation is imprecise or incomplete: to a given outcome in � correspond
several possible outcomes in X, the true one being unknown, or it could also be the
case that naturally the observation yields a subset. The case where for some ! 2 �,
�.!/ D X can also be interpreted by saying that observation was not possible, hence
any outcome in X is possible. We give some examples to illustrate these different
cases.

Example 7.1 (Incomplete observation) The random experiment consists in drawing
a card from a deck of 52 cards (the set�). Suppose that X D f|;};~;�g, and that
the observation � only reveals the color (black or red). Then if ! is the king of
clubs, �.!/ D f|;�g. Þ

Example 7.2 (Imprecise observation) An automatic radar on the side of the road
measures the speed of vehicles. Due to imprecision of measurement, only an interval
is obtained. Þ

Example 7.3 Let � be the set of patients in a hospital. Each patient has to go
through a number of examinations (blood pressure measurement, body temperature,
blood analysis, radiography, etc.). To each examination corresponds a mapping �
with a specific set X. If for some reason, the examination was not possible for patient
!, we set �.!/ D X. Here also, imprecision can happen for a measurement, and if
the result of a test is not enough clear, �.!/ can be multivalued. Þ
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The question is now if some probability measure 	 could be induced on X by
� . If � were an ordinary (single-valued) mapping, this would cause no difficulty,
because one would have 	 D P ı ��1. However, � being multivalued, a natural
solution is to derive upper and lower approximations of this probability. For any
subset T � X, consider the sets:

T� D f! 2 � W �.!/ \ T ¤ ¿g (7.1)

T� D f! 2 � W �.!/ ¤ ¿; �.!/ � Tg: (7.2)

Observe that X� D X� is the domain of � where � has a nonempty image. Define
E the family of subsets T of X such that T�;T� 2 B, and suppose that X 2 E and
P.X�/ ¤ 0. We define the upper probability 	�.T/ and lower probability 	�.T/ of
any T 2 E by

	�.T/ D P.T�/
P.X�/

(7.3)

	�.T/ D P.T�/
P.X�/

: (7.4)

It is easy to interpret these notions if one keeps in mind that the true outcome that
is observed lies in �.!/, but is unknown. Then T� may be regarded as the largest
event in� that is possibly related to T (because the true outcome in �.!/may lie in
T), hence	�.T/ is the largest possible amount of probability that can be assigned to
T. Similarly, T� is the smallest event in � that is for sure related to T (because any
outcome in �.!/ lies in T, and so does the true one), hence 	�.T/ is the minimal
amount of probability that can be assigned to T.

7.2 Shafer’s Evidence Theory

Almost 10 years later, Glenn Shafer published a book in 1976 called A Mathematical
Theory of Evidence [296] which reformulates in a completely different language the
ideas of Dempster.

Let X be a finite set representing the possible outcomes of an experiment, or the
possible answers to a question.1 Accordingly, subsets of X are called events. We

1This corresponds to our second interpretation of X in Sect. 2.4.1, and X is called frame of
discernment by Shafer. As in decision under risk and uncertainty (Chap. 5), X can also be
interpreted as the set of states of nature.



380 7 Dempster-Shafer and Possibility Theory

define a function m W 2X ! Œ0; 1� satisfying the two conditions:

m.¿/ D 0;
X

A�X

m.A/ D 1:

This function is originally called by Shafer basic probability assignment, but we
prefer to it the commonly used (belief) mass distribution, as employed, e.g., by
Kruse et al. [218]. The interpretation of m.A/ for some A � X is that the quantity
m.A/ represents the belief committed to the event A and only to it, in the sense that
it could not be committed to any proper subset of A. Events such that their (belief)
mass is positive are called focal sets.2 We denote by supp.m/ the set of focal sets of
m (support of the function m).

Let us be more explicit on the interpretation of this framework, along the line
of Sect. 2.4.1 (see in particular Examples 2.10–2.13). X being the set of possible
outcomes or answers to a given question, one tries to guess the true answer
by collecting pieces of evidence (hence the name “evidence theory”), ultimately
represented as subsets of X endowed with some certainty represented by the mass
distribution. Letting m.A/ D 1 means that the true answer lies in A with full
certainty. Subsets that do not correspond to any piece of evidence receive no mass
at all. A piece of evidence could be simply the opinion of some expert (this fits
particularly well the antique vase example (Example 2.12), while piece of evidence
in the usual sense fits better the murder example (Example 2.11). For a given piece
of evidence, the total mass of belief (which is 1) has to be distributed among the
different focal sets. Taking the murder example, one could deduce from some piece
of evidence that the murderer is most probably left-handed. If Alice and Charles are
left-handed but not Bob, then one could represent this as

m.fAlice, Charlesg/ D 0:8; m.fAlice, Bob, Charlesg/ D 0:2:

The number 0.8 translates the qualifier “most probably.” Note that the remaining
mass 0.2 is given to X, representing some ignorance because giving some belief to
X does not bring any information (i.e., does not help to find the true answer, here the
murderer; more on this later). Also, this example should make clear the meaning of
m.A/ as the belief committed to A and only to A: indeed, the fact that the murderer
is left-handed does not give any clue on Alice alone, nor on Charles alone, but only
on the pair fAlice,Charlesg. Two last remarks on interpretation:

(i) Each piece of evidence should be encoded by a single mass distribution. We
will explain later how to combine different pieces of evidence;

(ii) Following Shafer, we have set m.¿/ D 0 although some authors allow a
positive mass for the empty set. The latter means that there is some possibility

2The original name given by Shafer is “focal element,” which is somewhat misleading because
these are subsets of X.
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that the true answer lies outside X (open world hypothesis). This leads to
intricacies and we devote Sect. 7.2.1 to this delicate issue.

Supposing the mass distribution m to be given, we build several set functions
from it:

(i) The belief function Bel W 2X ! Œ0; 1�, defined by

Bel.A/ D
X

B�A
B¤¿

m.B/ .A � X/I (7.5)

(ii) The plausibility function Pl W 2X ! Œ0; 1�, defined by

Pl.A/ D
X

B\A¤¿
m.B/ .A � X/I (7.6)

(iii) The commonality function q W 2X ! Œ0; 1�, defined by

q.A/ D
X

B	A

m.B/ .A � X/: (7.7)

Remark 7.4

(i) The readers may find strange that we mention B ¤ ¿ in the sum defining Bel.
Indeed, because m.¿/ D 0 is assumed, that makes no difference. However,
this is the correct definition when m.¿/ ¤ 0 (see Sect. 7.2.1).

(ii) For a given event A, Bel.A/ quantifies the total mass of belief that is with
certainty committed to A, while Pl.A/ quantifies the total mass of belief that
is possibly related to A. Both measure the uncertainty of the event A. The
commonality function, which also appears in Dempster’s paper [77, Eqs. (5.2)
and (5.3)] (the notation q comes from this source, but not the name) is more
tricky to interpret, and is not a measure of uncertainty (we will return to this
later: see Sects. 7.2.3 and 7.7). It is evident from the definition that

Bel.A/ 6 Pl.A/ .A 2 2X/;

and also that they are conjugate of each other: Bel D Pl and Pl D Bel. Also,
they are normalized capacities. By contrast, the commonality function is not a
capacity because it is anti-monotone and differently normalized:

A � B ) q.A/ > q.B/; q.¿/ D 1:

(iii) Since m.¿/ D 0, comparing (7.5) and (2.16) reveals that the mass distribution
m is nothing but the Möbius transform of Bel: see also (2.22) that is
identical to (7.6). Since m is defined as a nonnegative function, it follows
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from Theorem 2.33(v) that the belief functions of this chapter (fortunately!)
coincide with the belief measures introduced in Chap. 2; i.e., normalized
totally monotone capacities. Similarly, plausibility functions and plausibility
measures coincide. The equivalence between belief functions generated by a
mass distribution and normalized totally monotone capacities was shown by
Shafer [296, Theorem 2.1].

On the other hand, we see by comparing (7.7) and (2.39) that q is the co-
Möbius transform of Bel.

(iv) We now show that the frameworks of Dempster and Shafer coincide, supposing
X to be finite. As it is relatively apparent from the definitions, the upper
and lower probabilities correspond respectively to the plausibility and belief
functions, while the mass distribution plays the rôle of � and P. Specifically,

P.T�/ D P.f! 2 � W �.!/\ T ¤ ¿g/
D

X

! W�.!/\T¤¿
P.f!g/:

Defining m� W 2X ! Œ0; 1� by m�.¿/ D 0 and

m�.A/ D P.��1.A// .¿ ¤ A � X/;

we obtain P.T�/ D P
A\T¤¿ m�.A/. Similarly,

P.T�/ D P.f! 2 � W �.!/ � T; �.!/ ¤ ¿g/
D

X

! W�.!/�T;�.!/¤¿
P.f!g/ D

X

A�T

m�.A/:

Defining m W 2X ! Œ0; 1� by m.A/ D m�.A/P
B m�.B/ yields the mass distribution m.

}
Since both probability measures and belief functions model uncertainty, how do

they differ? The approach of Dempster clearly shows that belief and plausibility
functions can be interpreted as upper and lower probabilities; i.e., probability
models with insufficient knowledge. This can be directly seen through the mass
distribution, even on the simplest non-trivial case; i.e., X D fx1; x2g. Denoting
m.fx1g/ and m.fx2g/ by m1;m2 respectively, we have

Bel.fxig/ D mi; i D 1; 2; Bel.X/ D m1 C m2 C m.X/ D 1:

If Bel would be a probability measure, we would have additivity, hence 1 D
Bel.fx1g/ C Bel.fx2g/ D m1 C m2, forcing m.X/ D 0. As we explained above,
m.X/ represents the quantity of ignorance in the piece of evidence. It follows that a
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purely probabilistic model conveys no ignorance. The following example illustrates
this.

Example 7.5 (The antique vase: Example 2.12 revisited (after Ex. 1.1 in Shafer
[296])) A man enters an antique shop in Upper Lascar Row in Honk Kong. Seeing
a magnificent (and expensive!) vase of the Ming dynasty, he wonders if this vase is
genuine or is counterfeit. Let us define X D fx1; x2g as the set of possible answers
to this question, with x1 corresponding to “genuine” and x2 to “counterfeit.”

Suppose that this person is a tourist, without any knowledge of ancient chi-
naware. Therefore he has no specific reason to think that x1 or x2 is true, and all
the mass of belief is allocated to X (total ignorance):

m.fx1g/ D m.fx2g/ D 0; m.X/ D 1:

This yields

Bel.fx1g/ D Bel.fx2g/ D 0

Pl.fx1g/ D Pl.fx2g/ D 1:

Suppose now that this person is an expert in antique chinaware, and that after
careful examination, there are as many clues in favor of authenticity than in favor of
counterfeiting. This is modelled as follows:

m.fx1g/ D m.fx2g/ D 1

2
; m.X/ D 0 (no ignorance);

which yields

Bel.fx1g/ D Bel.fx2g/ D 1

2

Pl.fx1g/ D Pl.fx2g/ D 1

2
:

Observe that a modelling based on probability yields in both cases

P.fx1g/ D P.fx2g/ D 1

2

which make them indiscernable in probability theory. Þ

Remark 7.6 In the case of an arbitrary finite X, belief functions are probability
measures (i.e., additive) if and only if the focal sets of m are singletons, which is
clear by (7.5). Then Bel D Pl, which in the framework of Dempster is equivalent to
have � single-valued. }
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We finish this section by presenting some examples of particular mass distribu-
tions and their induced belief functions. The vacuous mass distribution mX on X is
defined by mX.X/ D 1 and mX.A/ D 0 for all A � X. The induced vacuous belief
function is then nothing other than the unanimity game centered on X:

uX.A/ D 0;8A � X; uX.X/ D 1:

Simple mass distributions are of the form

mB;˛.A/ D

8
ˆ̂
<

ˆ̂
:

1 � ˛; if A D B

˛; if A D X

0; otherwise

; (7.8)

with ˛ 2 Œ0; 1Œ and B 2 2X n f¿;Xg. The corresponding simple belief function is
given by

BelB;˛.A/ D

8
ˆ̂
<

ˆ̂
:

1 � ˛; if A 2 ŒB;XŒ
1; if A D X

0; otherwise

:

According to our interpretation, the vacuous mass distribution represents total
ignorance, hence its name. It was illustrated by the antique vase example, when
representing the belief of the tourist. Simple mass distributions are very common
because they express that there is a clue focusing on a single subset, endowed with
some ignorance. Note that when ˛ D 0 (no ignorance), simple belief functions are
unanimity games.

7.2.1 The Case Where m.¿/ > 0

Before going to the presentation of the next approach, we study the delicate issue
of allowing m.¿/ > 0. It seems that Dubois and Prade [104] have been the first to
consider this possibility and to study its consequences.

The comparison with Dempster’s approach has revealed that the focal sets of m
correspond to the image of� (more precisely, its elements with positive probability).
Under this view, because ¿ is a possible value of � with a nonzero probability, in
order to make a perfect correspondence between the two frameworks, it is natural
to allow a positive value for m.¿/. Doing so, the correspondence between the
two frameworks [see Remark 7.4(iv)] becomes simpler. Indeed, m can be directly
defined as

m.A/ D P.��1.A// .A 2 2X/
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Now, observe that in (7.2), which serves to establish the lower probability of some
event A � X, �.!/ D ¿ is discarded, which corresponds to B ¤ ¿ in the sum
computing the belief function in (7.5). Under this view, Bel.A/ corresponds to
P.A�/, but not to 	�.A/ as given by (7.4), since there is no normalization. Some
authors, as Kramosil [216], proposes the two versions: the belief function Bel as
defined here, and the normalized belief function which we denote3 by Bel�:

Bel�.A/ D
P

¿¤B�A m.B/
P

¿¤B�X m.B/
D
P

¿¤B�A m.B/

1 � m.¿/ ; (7.9)

assuming m.¿/ < 1. Then Bel�.A/ corresponds to 	�.A/.
In both frameworks, the withdrawal of ¿ when computing the belief or lower

probability of an event is natural, if not mandatory: the empty set does not bring
support nor evidence to an event A. The consequence, however, is that belief
functions (respectively, plausibility functions) are, strictly speaking, not belief
measures (respectively, plausibility measures), as defined in Sect. 2.8.4, because
they are not normalized:

Bel.X/ D 1 � m.¿/; Bel.¿/ D 0

Pl.X/ D 1 � m.¿/; Pl.¿/ D 0:

More importantly, m is not the Möbius transform of Bel, but instead m� defined by

m�.A/ D
(

m.A/; if A ¤ ¿
0; if A D ¿

is the Möbius transform of Bel. Since it is nonnegative, Bel is a totally monotone
and monotone capacity. On the other hand, as it can be checked, Pl remains the
conjugate of Bel and therefore is a totally alternating and monotone capacity.

7.2.2 Kramosil’s Probabilistic Approach

We briefly describe the approach of Kramosil [216], which is based on a compatibil-
ity relation between observations and states of a system, and resembles the approach
of Dempster, although being more complex.

Let X be the set of states of a system under investigation, whose actual state
is unknown. The state of the system cannot be directly observed nor guessed
with certainty, however observations, results of experiments, measurements, etc.
are available. We denote by E the space of such observations (which could be

3In his book, Kramosil takes the opposite convention for the notation.
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vectors, etc.). The link between observations and states is done through the
compatibility relation � W X � E ! f0; 1g, and �.x; y/ D 0 means that state x 2 X
cannot be the actual state of the system given that the observation is y 2 E; i.e., y
and x are incompatible. Then �.x; y/ D 1 means that given that the observation is
y, one cannot avoid the possibility that the actual state is x (y and x are compatible).
We introduce U�.y/ D fx 2 X W �.x; y/ D 1g the set of states compatible with
observation y.

The next step is to consider that observations are pervaded with uncertainty; i.e.,
y is the value taken by a random variable Y defined on a probability space .�;B;P/,
taking its values in a measurable space .E; E/. One may ask if given ! 2 � and A �
X, the inclusion U�.Y.!// � A holds or does not hold. If f! 2 � W U�.Y.!// � Ag
belongs to B, we may quantify the size of this set by its probability P.f! 2 � W
U�.Y.!// � Ag/. If this is also true for A D ¿, then the following quantity

Bel�.A/ D P.f! 2 � W ¿ ¤ U�.Y.!// � Ag/

is defined, and is called the non-normalized degree of belief of A. Similarly, the
normalized degree of belief is defined by, provided P.f! 2 � W U�.Y.!// D
¿g/ < 1,

Bel�� .A/ D P.f! 2 � W ¿ ¤ U�.Y.!// � Ag/
1 � P.f! 2 � W U�.Y.!// D ¿g/ :

This defines the belief and the normalized belief functions. Plausibility functions
are defined by conjugation.

The correspondence with the framework of Shafer is clear by defining m W 2X !
Œ0; 1� by

m.A/ D P.f! 2 � W U�.Y.!// D Ag/;

letting E;X to be finite and taking E D 2E.

7.2.3 Random Sets

An alternative view of the theories of Dempster and of Shafer is brought by the
theory of random sets, as proposed by Matheron [237] and Kendall [206], originally
in the field of stochastic geometry. A comprehensive treatment and thorough
development of random sets, putting them into perspective with evidence theory
as well as possibility theory (see below), and proposing them as a universal means
to represent uncertainty, can be found in the monograph of Goodman and Nguyen
[160]. We give in this section only a flavor of it, keeping original notation and
terminology of [160].
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Random sets are just a natural generalization of the notion of random variable,
and as will become apparent, are very close to the framework given by Dempster.
Let .�;B;P/ be a probability space, and X be a nonempty set. A random set is a
measurable mapping S W .�;B;P/ ! .B0; �.2B0 /; �/, where B0 � 2X , �.2B0 / a
sigma-algebra including B0, and ! 2 � 7! S.!/ � X. The probability measure
� induced by S on B0 is � D P ı S�1 (we note that S is nothing other than the
multivalued-mapping� of Dempster).

In words, each realization of a random set yields a subset. One of the oldest and
most famous example of a random set is Buffon’s needle.

Example 7.7 (Buffon’s needle) Consider a needle of length l. The needle falls down
on a floor made of parallel strips of wood, each of the same width d. Supposing
d < l, the needle may fall across one or several lines formed by the strips. Denoting
by X the set of lines formed by the strips, we define S.!/ (or �.!/) as the set of
lines crossed by the needle in drop !. Note that one may find S.!/ D ¿. Þ

Let us give another example.

Example 7.8 (Couso et al. [62, Sect. 2.1.2]) Let � be a finite population of
individuals (say, the participants of some international conference). Consider X to be
the set of languages (e.g., English, French, Spanish, Polish, German, Japanese, etc.)
and the mapping S assigning to every participant ! the set of languages that ! can
speak. Endowing � with some probability distribution (e.g., a uniform one), S is a
random set, enabling the study of the distribution of languages across the population
�. One can for example compute the probability that a participant is able to speak
Polish and Japanese, or that a participant speaks at least three languages, etc. Þ

We introduce the following collections of sets:

(i) The class of superset coverages of B � X:

CB.B0/ D fC 2 B0 W C � BgI

(ii) The class of subset coverages of B � X:

DB.B0/ D fC 2 B0 W C � BgI

(iii) The class of incidences relative to B � X:

EB.B0/ D fC 2 B0 W C \ B ¤ ¿g:

Note that EB � CB;DB, and 2XnDB D EXnB. Next, we define the following functions,
where S is a random set with range B0

(i) The subset coverage function for S:

	
.1/
S .B/ D P.! 2 � W S.!/ 2 CB.B0// D P ı S�1.CB.B0//

D P.B � S/ .B � X/I
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(ii) The superset coverage function for S:

	
.2/
S .B/ D P.! 2 � W S.!/ 2 DB.B0// D P ı S�1.DB.B0//

D P.B � S/ .B � X/I

(iii) The incidence function for S:

	
.3/
S .B/ D P.! 2 � W S.!/ 2 EB.B0// D P ı S�1.EB.B0//

D P.B \ S ¤ ¿/ .B � X/I

(iv) The complement-incidence function for S:

	
.4/
S .B/ D P ı S�1.EXnB.B0// D P.S 6� B/ .B � X/:

It is easy to check the following correspondences .B 2 2X/:

	
.2/
S .X n B/ D 	

.1/

XnS.B/ (7.10)

1 � 	
.3/
S .B/ D 	

.1/

XnS.B/ (7.11)

1 � 	.4/S .X n B/ D 	
.1/

XnS.B/: (7.12)

We now show that the above functions are closely related to some families of
set functions introduced by Goodman and Nguyen [160] based on Choquet [53,
Chap. 3], which can be interpreted as measures of some type of uncertainty. Let
B0 be an algebra on X, 
 a set function defined on B0, and consider a family of
subsets B;B1; : : : ;Bk 2 B0, k 2 N0. We define the quantity [generalizing difference
functions, see Remark 2.19(vi)]:

rk.
;~I B;B1; : : : ;Bk/ D
X

K�f1;:::;kg
.�1/jKj
.B ~ .~

i2K
Bi//;

where ~ is either [ or \. Then

(i) 
 is a plausibility measure or totally [-alternating capacity if 
.¿/ D 0 and

rk.
;[I B;B1; : : : ;Bk/ 6 0 .k D 1; 2; : : :/.B;B1; : : : ;Bk 2 B0/

(ii) 
 is a belief measure or totally \-monotone capacity if 
.X/ D 1 and

rk.
;\I B;B1; : : : ;Bk/ > 0 .k D 1; 2; : : :/.B;B1; : : : ;Bk 2 B0/



7.2 Shafer’s Evidence Theory 389

(iii) 
 is a doubt measure or totally [-monotone anti-capacity if 
.¿/ D 1 and

rk.
;[I B;B1; : : : ;Bk/ > 0 .k D 1; 2; : : :/.B;B1; : : : ;Bk 2 B0/

(iv) 
 is a disbelief measure or totally \-alternating anti-capacity if 
.X/ D 0 and

rk.
;\I B;B1; : : : ;Bk/ 6 0 .k D 1; 2; : : :/.B;B1; : : : ;Bk 2 B0/:

The readers can check that the two first definitions coincide with what we called
monotone and totally alternating set functions, and monotone and totally monotone
set functions (up to additional boundary conditions), see Definition 2.18. Observe
that by letting k D 1 and B � B1, r1.
;[I B;B1/ 6 0 is simply monotonicity. The
same holds for the second definition, hence they can be considered to be capacities.4

Doing similarly for the two next definitions, we see that they are anti-monotone,
hence the name anti-capacity.

Proceeding as in Theorem 2.20(ii), the following relations are easy to show:

Lemma 7.9

(i) 
 is a plausibility measure on B0 if and only if 1� 
 is a doubt measure on B0;
(ii) 
.�/ is a belief measure on B0 if and only if 
.X n �/ is a doubt measure on

B0 D fX n B W B 2 B0g;
(iii) 
.�/ is a disbelief measure on B0 if and only if 1 � 
.X n �/ is a doubt measure

on B0.

The following theorem relates previous functions of uncertainty to random sets.

Theorem 7.10 Let S be a random set on B0 corresponding to the probability space
.B0; �.2B0 /; �/, where B0 is an algebra, and that CB.B0/, DB.B0/, EB.B0/ 2 �.2B0 /
for all B 2 B0. Then

(i) 	.1/S is a doubt measure;

(ii) 	.2/S is a belief measure;

(iii) 	.3/S is a plausibility measure;

(iv) 	.4/S is a disbelief measure.

The framework of Shafer can easily be recovered from the above one, up to an
important difference however. Indeed, a mass distribution m defines a random set S
from .�;B;P/ to .2X; 2.2

X/; �/, with:

�.fAg/ D P ı S�1.fAg/ D m.A/ .A 2 2X/:

4Up to the notable difference that 
.¿/ D 0 is not ensured for the second one. Similarly, 
.X/ D
1 is not ensured for the first one. Hence, the above definitions are more general than what we
presented in Chap. 2. As Theorem 7.10 will show, these definitions are dictated by the coverage
functions of random sets, and the unusual normalization conditions come from the fact that S D ¿
may have a positive probability to occur.
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By definition of m, � is indeed a probability distribution on 2X. Moreover, we obtain

	
.1/
S .B/ D q.B/ (7.13)

	
.2/
S .B/ D ¿

Bel .B/ (7.14)

	
.3/
S .B/ D Pl.B/; (7.15)

where
¿

Bel is the modified belief function counting the mass on the empty set:

¿
Bel .B/ D

X

C�B

m.C/:

Indeed, for any B 2 2X ,

¿
Bel .B/ D

X

C�B

m.C/ D
X

C�B

�.fCg/

D P ı S�1.fC W C � Bg/ D P ı S�1.DB.2
X//

D 	
.2/
S .B/;

and similarly for the other functions. Note that the fourth function 	.4/S has no
equivalent in the framework of Shafer. Also, the doubt function of Shafer, defined
as Dou.A/ D Bel.X n A/, is not a doubt measure in the above sense.

Remark 7.11

(i) One can see from (7.13) that the commonality function, which had so far no
clear interpretation in Shafer’s framework, appears to be the subset coverage
function 	.1/S of a random set S. This function is quite easy to interpret and
useful in the context of random sets. Consider again Example 7.8 and observe
that the answer to the question “What is the probability to find a participant
speaking both Polish and Japanese?” is given by 	.1/S .fPolish,Japaneseg/.

(ii) The readers may find curious that a small discrepancy is left in the equivalence
between the two theories, although one could have easily remedied to this by
changing the definition of the class of subset coverages as follows:

D0
B.B0/ D fC 2 B0 W ¿ ¤ C � Bg:

But doing so, all the nice symmetries between the four coverage functions are
destroyed. Also, allowing the empty set as a possible outcome of an experiment
is meaningful in the context of random sets (see the Buffon’s needle experiment:
it could happen that the needle does not cross any line!). Incidentally, in the
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works of Goodman, both definitions appear, but sometimes in a mixed way!
(see [159, 160]).

}

7.2.4 Ontic vs. Epistemic View of Sets

The different frameworks we have presented so far have been shown to be almost
equivalent on the mathematical point of view. This mathematical similarity hides
however a deep difference in the usage of these theories, which comes from the
two different interpretations of a set, namely the conjunctive or ontic view, and
the disjunctive or epistemic view (see Couso et al. [62, Sect. 2.1.1] and Couso and
Dubois [61]).

In the ontic view, a set is regarded as a collection of elements satisfying
some property (it is a conjunctive view in the sense that all elements satisfy the
property). It is the natural representation of attributes which are by essence set-
valued, or, closer to the topic of this chapter, of outcomes of an experiment,
answers to a question, which are set-valued. This is the case of Buffon’s needle,
or of Example 7.8: a needle may intersect several lines, or no line at all, and
S.!/ D fGerman,Spanishg means that ! can speak German and Spanish, and no
other language.

By contrast, in the epistemic view, a set contains all possible (and mutually
exclusive, hence the name “disjunctive”) values of some variable of interest under a
given state of knowledge. Only one of them is the true value, and it is assumed that
the true value is contained in the set. Examples 7.1–7.3 are all of this type, since
they pertain to observations which are imprecise.

By construction, the frameworks of Dempster, Shafer, and Kramosil deal with
sets of the epistemic type, while random sets adopt by essence (at least, in the
original view of Kendall and Matheron) the ontic view. This explains why the
commonality function has no clear interpretation in the framework of Shafer, while
it has in the random set framework [Remark 7.11(i)].

7.3 Dempster’s Rule of Combination

In his 1967 paper, Dempster proposed a rule to combine different sources of
information pertaining to the same set X; i.e., multivalued mappings �1; : : : ; �q,
with �i W �i ! 2X. We present first this rule in the usual form, given by Shafer
(recall that X is finite and that m.¿/ D 0).
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7.3.1 The Rule of Combination in the Framework of Evidence
Theory

Let m1;m2 be two mass distributions on X, representing two pieces of evidence
on the outcomes in X that are supposed to be independent (i.e., coming from
two independent sources). The aim is to build a new mass distribution m D
m1 ˝ m2, combining the information conveyed by m1 and m2, and supposing, apart
independence, that the two sources are perfectly reliable.

Definition 7.12 (Dempster’s rule of combination) Let m1;m2 be two mass
distributions on X. If

X

B2supp.m1/;C2supp.m2/
B\CD¿

m1.B/m2.C/ < 1; (7.16)

then m D m1 ˝ m2 is defined as

m.A/ D .m1 ˝ m2/.A/ D

X

B2supp.m1/;C2supp.m2/
B\CDA

m1.B/m2.C/

1 �
X

B2supp.m1/;C2supp.m2/
B\CD¿

m1.B/m2.C/
.A 2 2X n f¿g/

(7.17)

and m.¿/ D 0.

It is easy to see that the above defined m is indeed a mass distribution on X (Shafer
[296, Theorem 3.1]).

The quantity
P

B2supp.m1/;C2supp.m2/
B\CD¿

m1.B/m2.C/ is the level of conflict between

m1;m2. If the level of conflict is equal to 1, the combination is not defined, and the
pieces of evidence m1;m2 are said to be contradictory. Indeed, it means that there
is no outcome x 2 X on which the two pieces of evidence agree; i.e., such that there
exist two focal sets A 2 supp.m1/;B 2 supp.m2/ such that x 2 A \ B. The next
lemma explains this and still gives other equivalent conditions.

Lemma 7.13 Let m1;m2 be two mass distributions on X with induced belief
functions Bel1;Bel2 and commonality functions q1; q2 respectively. The following
propositions are equivalent.

(i) m1;m2 are contradictory;
(ii) If A 2 supp.m1/ and B 2 supp.m2/, then A \ B D ¿;

(iii) There exists ¿ ¤ A � X such that Bel1.A/ D 1 and Bel2.X n A/ D 1;
(iv) q1.A/q2.A/ D 0 for all A 2 2X n f¿g.
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Proof (i),(ii) Suppose there exist A 2 supp.m1/;B 2 supp.m2/ such that A\B ¤
¿. Then (7.16) holds because

X

A2supp.m1/
B2supp.m2/

m1.A/m2.B/ D
X

A2supp.m1/

m1.A/
X

B2supp.m2/

m2.B/ D 1: (7.18)

Conversely, if (ii) holds then by (7.18) m1 and m2 are contradictory.
(ii))(iii) Consider A D S

C2supp.m1/ C. Then Bel1.A/ D 1 and by (ii), X n A �S
C2supp.m2/, hence Bel2.X n A/ D 1.
(iii))(iv) Consider any B 2 2X n f¿g. Note that by definition of A, for any set

C 6� A, we have m1.C/ D 0, and similarly m2.C/ D 0 if C \ A ¤ ¿. Suppose
B n A ¤ ¿. Then

q1.B/ D
X

C	B

m1.C/ D 0

because each m1.C/ D 0. Now, if B n A D ¿ then B \ A ¤ ¿, hence q2.B/ D 0.
(iv))(ii) Suppose there exist A 2 supp.m1/, B 2 supp.m2/ such that A\B ¤ ¿.

Then q1.A\B/ > m1.A/ > 0 and q2.A\B/ > m2.B/ > 0, therefore q1.A\B/q2.A\
B/ ¤ 0. ut

We give some properties of the Dempster’s rule of combination.

Theorem 7.14 The Dempster’s rule of combination, seen as an algebraic operator
˝ on the set of mass distributions on X, satisfies the following properties for every
m;m0;m00:

(i) Commutativity: m ˝ m0 D m0 ˝ m;
(ii) Associativity: m ˝ .m0 ˝ m00/ D .m ˝ m0/˝ m00;

(iii) The vacuous mass distribution is a neutral element: m ˝ mX D m;
(iv) Nonidempotence: m ˝ m ¤ m.

(the easy proof is left to the readers; (iv) is illustrated by Example 7.16).

Remark 7.15 The properties listed in Theorem 7.14 almost make the set of mass
distributions on X a group for ˝, because only the existence of an inverse is missing.
The question is: For a given mass distribution m, does there exist a distribution m0
such that m ˝ m0 D mX , the vacuous mass distribution? The answer is no: no such
inverse mass distribution exists. Indeed, suppose that m1.A/ > 0 for some A ¤ X.
The condition to get .m1 ˝ m2/.A/ D 0 by some adequate m2 is

X

B2supp.m2/
B	A

m1.A/m2.B/ D 0;

which is obviously impossible to satisfy because m2 is nonnegative. This can be
interpreted by saying that, once some belief is assigned to some event, it is not
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possible to erase it completely by combining it with another piece of evidence.
To get out of this deadlock, Kramosil [216, Chap. 11] proposes to define belief
functions by signed basic probability assignments; i.e., m takes its values in R, so
that belief functions take values outside the unit interval. }

The fact that ˝ is not idempotent should not be seen as a drawback of the
rule: it is rather a consequence of the assumption that the two pieces of evidence
should be independent. Then, a combination of m with itself acts as a reinforcement,
enhancing the difference between events with high and low belief. This is shown in
the next example.

Example 7.16 Consider m D mA;0:3 (simple mass distribution). Then

.m ˝ m/.A/ D m.A/m.A/C m.A/m.X/C m.X/m.A/

D 0:49C 0:21C 0:21 D 0:91

.m ˝ m/.X/ D m.X/m.X/ D 0:09 :

Hence we have found that mA;0:3 ˝ mA;0:3 D mA;0:09. Þ

7.3.2 The Normalized and the Nonnormalized Rules

To Normalize or Not to Normalize?

An important issue concerns the denominator in (7.17), which performs a nor-
malization in order to get a well-defined mass distribution m (i.e., such that
P

A�X m.A/ D 1). Some authors do not perform a normalization, because normal-
ization erases any trace of conflict, which could be a valuable information for further
processing. This is illustrated by the following example. Let us denote by ˝� the
nonnormalized rule.

Example 7.17 (After Zadeh [358]) A person suffers from some illness and calls a
doctor. After auscultation, the doctor declares that it is almost surely illness a (with
99 % certainty), although there exists some very small probability that it is illness b
(with 1 % certainty).

The issue being serious, a second doctor is called, who after examination comes
to the conclusion that it is almost sure to be illness c (with 99 % certainty), although
there is very little chance that it is illness b (with 1 % certainty). What to conclude
from these very conflicting diagnoses?

Modeling the two pieces of evidence through Dempster-Shafer theory, we set
X D fa; b; cg and arrive at

m1.fag/ D 0:99; m1.fbg/ D 0:01

m2.fcg/ D 0:99; m2.fbg/ D 0:01 :
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We note that the two mass distributions are not contradictory since fbg is common,
although highly conflicting because the level of conflict is

X

A\BD¿
m1.A/m2.B/ D 1 � m1.fbg/m2.fbg/ D 0:9999 :

Applying the (normalized) rule of combination yields .m1 ˝ m2/.fbg/ D 1, and 0
for a and c, while the nonnormalized rule yields .m1 ˝� m2/.fbg/ D 0:0001, and 0
for a and c.

The result given by the normalized rule is very surprising because the two doctors
agreed only on one thing: that the belief assigned to b is very low! Þ

One can conduct the analysis of this example a little bit further and try to
reconciliate the two views. In fact, both are meaningful, but in different contexts.
The normalized rule is suitable for the Sherlock Holmes’ world (closed world
hypothesis). There, the murderer is one of the characters of the novel, and he/she
has committed the crime (in our terminology: X contains the true answer and it is
unique). Also, every piece of evidence must be taken into account with precision,
every detail in the novel is relevant, and the murderer is most often the most
improbable person, obtained by successive elimination of the other hypotheses (in
our terminology: every piece of evidence is trustable, and even the most improbable
element (here b) must be the solution if every other has been eliminated). By
contrast, the nonnormalized rule is suitable for the real everyday world (open world
hypothesis). There, it is not sure that X is exhaustive and that the true answer is a
single element of X. Also, pieces of evidence are not always fully trustable, so that
in case of high conflict as in our example, it is better to call a third doctor! See also
Smets [309, Sect. 6] for further comments on this issue.

The m.¿/ > 0 Issue Again and the Nonnormalized Rule

The normalization issue is also related to the problem of admitting or not that m.¿/
could be positive. Relaxing the assumption m.¿/ D 0 gives in fact a much more
clear view of the rule of combination, as we show now.

Take two mass distributions m1;m2. We define the nonnormalized combination
of the two distributions as:

.m1 ˝� m2/.A/ D
X

B2supp.m1/;C2supp.m2/
B\CDA

m1.B/m2.C/ .A � X/: (7.19)

Note that, unlike the normalized rule, the formula is extended to ¿. Recall that
allowing m.¿/ > 0 amounts to considering an open world, and m.;/ > 0 is the
mass of belief committed to the fact that the true answer lies outside X. Therefore,
.m1 ˝� m2/.¿/ is the amount of belief that, after combination of the evidences, the
true answer is outside X. In other words, the level of conflict (a term that somehow
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suggests a kind of failure or blocking of the procedure) of Shafer is reinterpreted as
a belief that the true answer must be sought outside, a conclusion that sounds more
optimistic, and opens new horizons(!).

The nonnormalized rule satisfies all properties of Theorem 7.14, and can be
computed in a very simple way through commonality functions.

Lemma 7.18 Given m1;m2 two mass distributions on X with induced commonality
functions q1; q2, the commonality function q induced by m D m1 ˝� m2 is given by

q.A/ D q1.A/q2.A/ .A � X/: (7.20)

Proof For any A � X, we have

q.A/ D
X

B	A

m.B/ D
X

B	A

X

C\DDB

m1.C/m2.D/

D
X

C\D	A

m1.C/m2.D/ D
X

C	A

X

D	A

m1.C/m2.D/

D q1.A/q2.A/:

ut
It is interesting to note that Dempster in his 1967 paper directly proposed (7.20)
as definition of the rule of combination, which tends to indicate that the original
Dempster’s rule is nonnormalized. It seems however that Dempster implicitly
considered normalization when returning to upper and lower probabilities from the
commonality functions. Normalization was explicitly considered by Shafer, in order
to get a well-defined mass distribution as the result of combination. Also, (7.19) is
the formula given in Kramosil [216], and the one used with random sets (see below).

The Combination Rule in the Framework of Random Sets

It is instructive to write the (nonnormalized) Dempster’s rule of combination in the
framework of random sets. In short, the nonnormalized Dempster’s rule corresponds
to the intersection of two statistically independent random sets. This opens the
door to other rules of combination, based on other set operations, as well as the
combination of dependent random sets.

Specifically, let .2X; 2.2
X/; �1/ and .2X; 2.2

X/; �2/ be the two probability spaces
associated to two random sets S1; S2. Let us define S D S1 \ S2 and let us find the
corresponding probability measure �. For any A 2 2X , we have

S�1.A/ D f! 2 � W S.!/ D Ag
D f! 2 � W S1.!/ \ S2.!/ D Ag
D

[

C\DDA

f! 2 � W S1.!/ D C; S2.!/ D Dg:
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Applying statistical independence between S1; S2, we find

�.fAg/ D P ı S�1.A/

D
X

C\DDA

P.f! 2 � W S1.!/ D Cg/P.f! 2 � W S2.!/ D Dg/

D
X

C\DDA

�1.fCg/
„ ƒ‚ …

m1.C/

�2.fDg/
„ ƒ‚ …

m2.D/

:

7.3.3 Decomposition of Belief Functions into Simple Belief
Functions

Considering the rule of combination ˝� as an algebraic operation on the set of mass
distributions, the following question is natural: Does there exist a decomposition of
any mass distribution into a combination by ˝� of elementary mass distributions?
As “elementary” mass distributions we have at disposal the simple mass distribu-
tions defined in (7.8). The next result shows that it is indeed possible to make such
a decomposition, in most cases.

Theorem 7.19 (Decomposition of a mass distribution into simple mass distribu-
tions) (Smets [311]) Let m be a mass distribution on X such that 0 < m.X/ < 1.
Then m can be written as

m D ˝*

A22Xnf¿;Xg
mA;˛A ;

with

˛A D
Y

B	A

q.B/.�1/jBnAjC1

.A 2 2X n f¿;Xg/:

The proof will be given in Sect. 7.8, where the same result is shown in a more
general framework. Note that the condition m.X/ < 1 simply excludes the vacuous
mass function, for which obviously no decomposition is needed.

It is important to note that in the above decomposition, it may happen that ˛A > 1

for some A. If this happens, the corresponding mA;˛A is no longer nonnegative and
as a consequence, BelA;˛ is not a belief function any more.
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7.4 Compatible Probability Measures

Given a mass distribution m on X and the induced belief and plausibility functions
Bel;Pl, a probability measure P on X is said to be compatible with m (or with Bel;Pl)
if the following bracketting holds:

Bel.A/ 6 P.A/ 6 Pl.A/ .A 2 2X/: (7.21)

Suppose that we find some probability measure P such that P.A/ > Bel.A/ for every
A 2 2X . Then it follows that

Pl.A/ D 1 � Bel.X n A/ > 1 � P.X n A/ D P.A/ .A 2 2X/;

from which it follows that if the left inequality holds for every A in (7.21), the right
inequality immediately follows, and vice versa. Alternatively, we may say that Bel
(or Pl, or m) is compatible with a given P if (7.21) holds, and due to this symmetry,
it makes sense to speak of compatible Bel and P.

Since P.X/ D Bel.X/ D 1, a compatible probability is nothing but a core
element of Bel, considered to be a game on X, and conversely (see Chap. 3). Hence,
properties of compatible probability measures are straightforwardly obtained from
Chap. 3, and we denote the set of probability measures compatible with Bel as
core.Bel/.5 We summarize them below.

A belief function being totally monotone, it is also supermodular (2-monotone)
and therefore the structure of its core is completely known because its vertices
are known (Theorem 3.15). In addition, Theorem 3.62(iii) applies and reveals that
the set of compatible probability measures is the selectope of the belief function,
otherwise said, the set of all sharing values (see Sect. 3.5). These considerations
lead to the following.

Theorem 7.20 (The set of compatible probability measures) Let Bel be a belief
function and its associated mass distribution m.

(i) The set core.Bel/ of probability measures compatible with Bel is never empty,
and the set of corresponding probability distributions is a polytope whose
extreme points are the marginal vectors '�;Bel 2 R

X defined by

'�;Bel
x�.i/

D Bel.fx�.1/; : : : ; x�.i/g/� Bel.fx�.1/; : : : ; x�.i�1/g/
D

X

A�fx�.1/;:::;x�.i�1/g
m.A [ x�.i// .i D 1; : : : ; n/

where � is any permutation on f1; : : : ; ng, and X D fx1; : : : ; xng.

5Up to the fact that the core is defined in Chap. 3 as a set of n-dim vectors, not additive games! But
the two views are of course equivalent and we use them indifferently in this section.
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(ii) core.Bel/ D sel.Bel/, the selectope of Bel; i.e., each compatible probability
distribution has the form

P.fxg/ D
X

A2supp.m/
A3x

�.A; x/m.A/ .x 2 X/

with �.A; x/ > 0 for all ¿ ¤ A � X, x 2 A, and
P

x2A �.A; x/ D 1, and each
distribution obtained in this way is an element of core.Bel/.

Another important feature of the set of compatible probability distributions is that
its lower envelope coincides with the belief function, because belief functions are
supermodular games, hence exact [Definition 3.43 and Lemma 3.44(iii)]. Formally,

P�.A/ D min
P2core.Bel/

P.A/ D Bel.A/ .A 2 2X/:

Hence, belief functions are indeed lower probability measures. Similarly, the
corresponding plausibility measure is the upper envelope of core.Bel/.

In addition, the lower expected value of any random variable f over X is the
Choquet integral of f w.r.t Bel:

min
P2core.Bel/

EŒ f � D
Z

f dBel; (7.22)

as is immediate from Theorem 4.39.
The notion of compatible probability was already present in Dempster [77,

Sect. 2], where almost all of the above properties were shown.

7.5 Conditioning

As conditional probability is a key concept in probability theory, and especially in
its application to decision making and statistical inference, an adequate definition of
conditional belief and plausibility functions is of primary importance, and for this
reason, has already been proposed in the seminal paper of Dempster. Nevertheless,
several other definitions have been proposed later (which we call in a generic way
conditioning rules), with different purposes, and all of them collapse to the ordinary
conditional probability when belief functions become additive. We review in this
section the most relevant ones and study their properties. For this, we mainly follow
Denneberg [79], whose study is in fact more general since valid for capacities and
not restricted to belief functions (the readers are referred to [79] for more results). In
the whole section, unless otherwise indicated, X is arbitrary (not necessarily finite).
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7.5.1 The General Conditioning Rule

It was proposed by Fagin and Halpern [127], Jaffray [202], De Campos et al. [69],
and also by Dempster [77]. Following Denneberg [79], we define it for any capacity.

Let 	 be a capacity on an algebra X � 2X . For any B 2 X n f¿g, the (general)
conditional capacity given B is defined by

	B.A/ D 	.A \ B/

	.A \ B/C 	.Ac \ B/
.A 2 X /; (7.23)

provided the denominator is nonzero, and where 	 is the conjugate capacity. An
interesting feature of this conditioning rule is that it commutes with conjugation, as
is easy to check:

	B.A/ D 	B.X/� 	B.A
c/ D 	B.A/ .A 2 X /: (7.24)

It may happen that the conditional capacity given in (7.23) is not defined for some
A;B. We have the following result.

Lemma 7.21 If 	 is subadditive and 	.B/ > 0, then 	B is defined on X .

Proof By subadditivity, we have

	..Ac \ B/c/ D 	.A [ Bc/ 6 	.A \ B/C 	.Bc/:

Hence

	.A \ B/C 	.Ac \ B/ D 	.A \ B/C 	.X/� 	..Ac \ B/c/ > 	.X/� 	.Bc/

D 	.B/ > 0:

ut
Based on the above, we are in a position to define (general) conditional belief

and plausibility functions.
Consider a belief function Bel and its conjugate Pl. For any B 2 X such that

Bel.B/ > 0, the (general) conditional plausibility function is defined by

PlB.A/ D Pl.A \ B/

Pl.A \ B/C Bel.Ac \ B/
.A 2 X /; (7.25)

while the conditional belief function is defined as the conjugate of PlB:

BelB.A/ D 1 � PlB.A
c/ D Bel.A \ B/

Bel.A \ B/C Pl.Ac \ B/
.A 2 X /; (7.26)
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by using (7.24). By Lemma 7.21, PlB is defined for every B such that Bel.B/ > 0,
and so is BelB by conjugation.

The following lemma provides an interpretation of the conditional capacity.

Lemma 7.22 Let A;B 2 X . If 	B.A/ is defined, then it is the unique solution of the
following equation in t 2 Œ0; 1�

Z

B
.1A � t � 1X/ d	 D 0; (7.27)

where the integral is the Choquet integral. Conversely, if (7.27) has a unique
solution in Œ0; 1�, then it is 	B.A/.

The quantity t represents the amount the decision maker is ready to pay for winning
1 if A occurs, but the transaction is cancelled if B does not occur. Then the lemma
shows that 	B.A/ is the amount t that makes the decision maker indifferent between
gambling and not gambling.

Proof The integrand is .1A � t1X/1B, which takes the value 1 � t > 0 on A \ B,
0 on Bc, and �t on B n A. It follows that, using (4.12), Lemma 4.9 and positive
homogeneity,

Z

B
.1A � t � 1X/ d	 D

Z �
.1 � t/1A\B � t1Ac\B

�
d	

D .1 � t/	.A \ B/� t	.Ac \ B/:

The integral is zero iff t
�
	.A \ B/C	.Ac \ B/

� D 	.A \ B/. Since 	B.A/ 2 Œ0; 1�
when defined, the assertion follows. ut

We give some properties of conditional capacities.

Lemma 7.23 Let B 2 X n f¿g and 	 a capacity on X. The following propositions
hold.

(i) 	X D 1

	.X/
	; 	B.X/ D 	B.B/ D 1 supposing 	.B/ > 0;

(ii) For any A1;A2 2 X such that 	B.A1/; 	B.A2/ are defined, A1 � A2 implies
	B.A1/ 6 	B.A2/;

(iii) If � is another capacity on X with �.X/ D 	.X/ and supposing that
	B.A/; �B.A/ are defined,

� 6 	 ) 	B.A/ 6 �B.A/:

Proof

(i) is clear from the definition.
(ii) Consider the function fi;t D .1Ai � t � 1X/1B and its integral gi.t/ D R

fi;t d	 for
i D 1; 2. We know by Lemma 7.22 that the unique solutions of gi.t/ D 0 in



402 7 Dempster-Shafer and Possibility Theory

Œ0; 1� are ti D 	B.Ai/, i D 1; 2. Clearly, fi;s > fi;t whenever s 6 t. It follows
from Theorem 4.24(vi) that gi.s/ > gi.t/, i D 1; 2. Similarly, we have g1.t/ 6
g2.t/. This implies t1 6 t2, which proves the result.

(iii) Consider the function ft D .1A � t � 1X/1B and its integrals g	.t/ D R
ft d	 and

g�.t/ D R
ft d�. Now 	.X/ D �.X/ and 	 6 � imply g	.t/ 6 g�.t/. Then as

above 	B.A/ 6 �B.A/.
ut

The next result gives a clear interpretation of this conditioning rule.

Theorem 7.24 (The general conditioning rule as upper and lower conditional
probabilities) Let 	 be a submodular capacity, and B 2 X nf¿g such that	.B/ >
0. Then 	B; 	B are defined on X and

	B.A/ D max
2core.	/

B.A/; 	B.A/ D min
2core.	/

B.A/:

Note that  being additive, B is defined as ordinary conditional probabilities; i.e.,
B.A/ D .A\B/

.B/ .

Proof The fact that 	B (and therefore 	B) is defined on X is established by
Lemma 7.21. Now, by Lemma 7.22 we have

Z

.1A � 	B.A/ � 1X/1B d	 D 0:

Since 	 is submodular, we can apply the dual version (Remark 4.40) of Theo-
rem 4.39, and we find that there exists some additive measure  in the core of 	
such that

Z

.1A � 	B.A/ � 1X/1B d	 D
Z

.1A � 	B.A/ � 1X/1B d:

Because .B/ > 	.B/ > 0, it follows from Lemma 7.21 that B is defined on X ,
and by Lemma 7.22,

R
.1A � 	B.A/ � 1X/1B d D 0 implies that 	B.A/ D B.A/.

Now, for any other additive 0 2 core.	/, we deduce from Lemma 7.23(iii) that
0

B.A/ 6 	B.A/. ut
Remark 7.25

(i) The meaning of conditional belief and plausibility functions becomes clear
under the light of Theorem 7.24. Indeed, it shows that the conditional belief
function BelB.A/ [respectively, the conditional plausibility function PlB.A/] can
be seen as the most pessimistic (respectively, the most optimistic) estimate
of the conditional probability of A given B, among the probability measures
compatible with Bel (compare with Remark 7.31).
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(ii) Since 	 is supermodular and therefore exact [see Definition 3.43 and
Lemma 3.44(iii)], it follows that

	.A/ D max
2core.	/

.A/; 	.A/ D min
2core.	/

.A/ .A 2 X /;

and the theorem can be reformulated as

. max
2core.	/

/B D max
2core.	/

B; . min
2core.	/

/B D min
2core.	/

B: (7.28)

Note also that the theorem implies that fB W  2 core.	/g � core.	B/, but
as shown by Jaffray [202], equality does not hold in general.

}
A remarkable property of the general conditioning rule is that it preserves

k-monotonicity.

Theorem 7.26 (Preservation of k-monotonicity by the general conditioning
rule) Let 	 be a k-monotone capacity on 2X, X finite, for some k > 2, and E 2 2X

such that 	.E/ > 0. Then 	E is k-monotone too, and 	E is k-alternating.

The proof of this result is quite technical (Sundberg and Wagner [324]). A simpler
proof was provided by Chateauneuf and Jaffray [50], based on the notion of local
Möbius transform, which we give below. First, we introduce some necessary notions
and facts.

Consider a set function 
 W 2X ! R, k 2 N0, and a family S D fA;B1; : : : ;Bkg in
2X . We build the set function 
S W 2Œk� ! R, with I 7! 
.A \T

i2Ic Bi/, where Ic D
Œk� n I. Denoting by m
S the Möbius transform of 
S , the local Möbius transform of

 relative to S is the set function �
S W 2Œk� ! R defined by

�


S.I/ D m
S .Ic/ .I � Œk�/:

It follows that, for the above fixed S and k,


.A \
\

i2I

Bi/ D
X

J	I

�



S.J/ .I � Œk�/; (7.29)

and conversely

�


S.I/ D rk
.A \

\

i2I

Bi; fB`g`2Ic/ .I � Œk�/;

with the difference function rk
 defined in Remark 2.19(vi). Note that from (7.29)

.A/ D P

J�Œk� �


S.J/.

The following facts are easy to check (k;S are arbitrary).
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Lemma 7.27

(i) 
 is k-monotone, monotone and nonnegative if and only if �
S.I/ > 0, I � Œk�,
for every family S of k C 1 subsets of X;

(ii) For any set functions 
1; 
2 and 
 D 
1
2,

�


S.I/ D

X

I1\I2DI

�

1
S .I1/�


2
S .I2/ .I � Œk�/I

(iii) Fix E 2 2X n f¿g and consider the set function �.A/ D r1
.A [ Ec;E/ D

.A [ Ec/� 
.A \ E/ for any A 2 2X. Then, if 
 is k-monotone,

�
�
S.I/ > 0 .¿ ¤ I � Œk�/ (7.30)

�
�

S.¿/ D �



S[Ec .¿/� �



S.¿/ (7.31)

for any family S D fA;B1; : : : ;Bkg of k C 1 subsets of X, and S[Ec D fA [
Ec;B1 [ Ec; : : : ;Bk [ Ecg.

Proof (of Theorem 7.26) To simplify and without loss of generality, we consider
that 	 is normalized.

1. For any A 2 2E, we have

	.A/ D 	E.A/.1� 	.A [ Ec/C 	.A//

or equivalently

	jE D 	E � 	E � �

where 	jE is the restriction of 	 to E, and �.A/ D 	.A [ Ec/ � 	.A/ for any
A � E.

Observe that 	jE and 	 have the same local Möbius transform relative to
any family S in 2E. Moreover, by additivity of the local Möbius transform and
Lemma 7.27(ii), we obtain

�
	

S.I/ D �
	E
S .I/�

X

I1\I2DI

�
	E
S .I1/�

�

S.I2/ .I � Œk�/: (7.32)

By Lemma 7.27(i), we have to prove that �	E
S .I/ > 0 for all I � Œk� and all family

S of k C 1 sets in 2E.
2. We prove �	E

S .I/ > 0 for every nonempty I. Fix S D fA;B1; : : : ;Bkg. We rewrite
(7.32) as follows:

�
	E
S .I/ D �

	
S.I/C �

	E
S .I/

X

I2	I

�
�
S.I2/C

X

I1�I

�
	E
S .I1/

X

I[Ic
1	I2	I

�
�
S.I2/
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and

�
	E
S .I/.1 � �.C// D �

	
S.I/C

X

I1�I

�
	E
S .I1/

X

I[Ic
1	I2	I

�
�
S.I2/ (7.33)

because by (7.29)
P

I2	I �
�
S.I2/ D �.C/, with C D A \ T

i2I Bi. Observe that
1 � �.C/ > 0 because for any set K 2 2E, 1 � �.K/ D 1 � 	.K [ Ec/C 	.K/;
i.e., the denominator of 	E.K/, which is positive by assumption on E. Moreover,
�
	
S.I/ > 0 by k-monotonicity, and ��S.I/ > 0 for all I ¤ ¿ by Lemma 7.27(iii).

It follows from (7.33) that for any r > 1, the assertion


�
	E
S .i/ > 0 for k > jIj > r

� ) �
	E
S .I/ > 0 for jIj D r

is true. Now, for I D Œk�, (7.33) reduces to

�
	E
S .Œk�/.1 � �.C// D �

	
S.Œk�/;

which shows that �	E
S .Œk�/ > 0, and by induction �	E

S .I/ > 0 for all I ¤ ¿.
3. It remains to prove that �	E

S .¿/ > 0. For I D ¿, (7.33) becomes

�
	E
S .¿/.1� �.A// D �

	

S.¿/C
X

I1¤¿
�
	E
S .I1/

X

¿¤I2�Ic
1

�
�

S.I2/

C
� X

I1¤¿
�
	E
S .I1/

�
�
�
S.¿/:

Since
P

I1¤¿ �
	E
S .I1/ D 	E.A/ � �

	E
S .¿/ and by Lemma 7.27(iii) ��S.¿/ D

�
	
S[Ec .¿/� �

	
S.¿/, we get

�
	E
S .¿/.1� �.A/C �

�

S.¿// D �
	

S.¿/
�
1 � 	E.A/

�C �
	

S[Ec .¿/	E.A/

C
X

I1¤¿
�
	E
S .I1/

X

¿¤I2�Ic
1

�
�
S.I2/

> 0:

Hence �	E
S .¿/ > 0 as soon as 1 � �.A/C �

�
S.¿/ > 0. Suppose per contra that

1 � �.A/C �
�
S.¿/ 6 0. Then

.1� �.A//	E.A/C �
�
S.¿/	E.A/ D 	.A/C �

�
S.¿/	E.A/ 6 0;

hence by (7.31)

	.A/ 6
�
�
	
S.¿/� �

	
S[Ec .¿/

�
	E.A/ 6 �

	
S.¿/	E.A/ 6 �

	
S.¿/;
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which implies, because 	.A/ D P
I�Œk� �

	

S.I/ and �	S.I/ > 0 for all I � Œk�, that
	.A/ D �

	
S.¿/ and �	S.I/ D 0 for all I ¤ ¿. This implies in turn by (7.32) that

�
	E
S .I/ D 0 for all I ¤ ¿. Therefore, �	E

S .¿/ D 	E.A/ > 0.
ut

An immediate consequence of Theorem 7.26 is that conditional belief and
plausibility functions are still belief and plausibility functions.

7.5.2 The Bayes’ and Dempster-Shafer Conditioning Rules

Let 	 be a capacity on an algebra X � 2X and consider B 2 X . The Bayes’
conditional capacity given B is defined exactly as classical conditional probability
measures:

	Ba
B .A/ D 	.A \ B/

	.B/
.A 2 X /: (7.34)

It is defined if and only if 	.B/ > 0. The Dempster-Shafer conditional capacity
given B is defined by:

	DS
B .A/ D 	..A \ B/[ Bc/� 	.Bc/

	.X/� 	.Bc/
.A 2 X /: (7.35)

Note that the denominator is 	.B/, hence it is defined if and only if 	.B/ > 0.
These two rules are in a sense conjugate of each other because, as is easy to

check,

	Ba
B D 	DS

B : (7.36)

In Dempster [77], the conditional plausibility function Pl.AjB/ is defined by
the Bayes’ conditioning rule, and the conditional belief function Bel.AjB/ as its
conjugate; i.e., using (7.36),

Pl.AjB/ D PlBa
B .A/; Bel.AjB/ D 1 � Pl.AcjB/ D BelDS

B .A/ .A 2 X /:

These quantities are defined if and only if Pl.B/ > 0.
The analog of Lemma 7.22 is the following.

Lemma 7.28 Let A;B 2 X , and 	 a capacity on X . Define the capacity 	\B by
	\B.A/ D 	.A \ B/ for any A 2 X . The equation in t

Z

.1A � t � 1X/ d	\B D 0
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has a unique solution in Œ0; 1� if and only if 	.B/ > 0. In this case the solution is
t D 	Ba

B .A/.

Proof Considering t � 0, the values taken by the integrand are �t and 1 � t, hence

0 D
Z

.1A � t � 1X/ d	\B D �t	\B.X/C 	\B.A/ D 	.A \ B/� t	.B/;

which gives the result. ut
Since

R
.1A�t �1X/ d	\B D R

.1A�t �1X/1B d	\B, we can use the same interpretation
in terms of gambles as for Lemma 7.22. The only difference is that 	\B is used
instead of 	: this means that all what happens outside B is ignored by this rule.

We list some properties of these conditioning rules.

Lemma 7.29 For any B 2 X such that the following conditionals are defined, the
following propositions hold:

(i) 	Ba
X D 	DS

X D 1
	.X/	; 	Ba

B .X/ D 	Ba
B .B/ D 	DS

B .X/ D 	DS
B .B/ D 1;

(ii) For A1;A2 2 X , A1 � A2 implies 	Ba
B .A1/ 6 	Ba

B .A2/, 	
DS
B .A1/ 6 	DS

B .A2/;
(iii) If � is another capacity on X then

	 6 �; 	.B/ D �.B/ implies 	Ba
B 6 �Ba

B

	 6 �; 	.Bc/ D �.Bc/; 	.X/ D �.X/ implies 	DS
B 6 �DS

B :

(iv) If 	 is submodular (respectively, subadditive), then so is 	Ba
B ;

(v) If 	 is subadditive, then 	DS
B 6 	Ba

B ;
(vi) For B1;B2 2 X ,

.	Ba
B1
/Ba

B2
D 	Ba

B1\B2
; .	DS

B1
/DS

B2
D 	DS

B1\B2
:

(vii) If 	 is submodular and B 2 X such that 	.B/ > 0,

	B 6 	DS
B 6 	Ba

B 6 	B:

Proof Proofs for (i) to (iii) are analogous to those for the general conditioning rule
and are omitted.

(iv) We have, supposing 	.B/ > 0:

	.B/
�
	Ba

B .A [ C/C 	Ba
B .A \ C/

� D 	..A [ C/ \ B/C 	.A \ C \ B/

D 	..A \ B/ [ .C \ B//C 	..A \ B/ \ .C \ B//

6 	.A \ B/C 	.C \ B/

D 	.B/
�
	Ba

B .A/C 	Ba
B .C/

�
:
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(v) Since 	Ba
B is subadditive by (iv), it follows from (7.36) and Theorem 2.20(i)

that 	DS
B D 	Ba

B 6 	Ba
B .

(vi)

.	Ba
B1 /

Ba
B2 .A/ D 	Ba

B1
.A \ B2/

	Ba
B1
.B2/

D 	.A \ B2 \ B1/	.B1/

	.B1/	.B2 \ B1/

D 	Ba
B1\B2.A/:

The assertion for the Dempster-Shafer rule is obtained by conjugation.
(vii) It is enough to prove the last inequality, the first one being obtained through

conjugation and the second one being (v). By submodularity,

	.X/C 	.A \ B/ D 	.B [ .A [ Bc//C 	.B \ .A [ Bc// 6 	.B/C 	.A [ Bc/:

Then

	Ba
B .A/ D 	.A \ B/

	.B/
6 	.A \ B/

	.A \ B/C 	.X/� 	.A [ Bc/
D 	B.A/:

ut
The last result on the comparison of the three rules was already remarked by
Dempster [77] for upper and lower probabilities. With our notation:

BelB.A/ 6 Bel.AjB/ 6 Pl.AjB/ 6 PlB.A/ .A 2 X /:

The next result, proved by Gilboa and Schmeidler [155], is the analog of
Theorem 7.24 and sheds light on the interpretation of these rules.

Theorem 7.30 (The Bayes and DS conditioning rules as upper and lower
probabilities on a facet) Let 	 be submodular on X and B 2 X such that
	.B/ > 0. Then

	Ba
B .A/ D max

2core.	/
.B/D	.B/

Ba
B .A/; 	DS

B .A/ D min
2core.	/
.B/D	.B/

DS
B .A/ .A 2 X /

(notice that for additive , we have Ba
B D DS

B D B), and

core.	Ba
B / D fBa

B W  2 core.	/; .B/ D 	.B/g: (7.37)
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A short explanation on the title of the theorem: the set of additive measures 
in the core of 	 satisfying .B/ D 	.B/ is a facet of the core (Sect. 1.3.4); i.e.,
corresponding to a tight inequality among those defining the core, namely .A/ 6
	.A/, A 2 X .

Proof Let us introduce for ease of notation MB D f 2 core.	/ W .B/ D 	.B/g.
Let A 2 X . By Lemma 7.28 we have

Z

.1A � 	Ba
B .A/ � 1X/ d	\B D 0:

By submodularity of 	 (and therefore of 	\B) and Theorem 4.39, there exists some
additive measure 0 on X in the core of 	\B (i.e., 	\B 6 0 6 	\B) such that

Z

.1A � 	Ba
B .A/ � 1X/ d	\B D

Z

.1A � 	Ba
B .A/ � 1X/ d0:

Since	\B.B/ D 	\B.X/�	\B.Bc/ D 	.B/, it follows that 0.B/ D 	.B/, however
0.X/ D 	.B/ 6 	.X/, where the inequality may be strict. We are looking for some
additive measure 1 being nonzero on Bc such that  D 0 C 1 2 MB. Because 	
is exact, there must exist � 2 core.	/ satisfying �.Bc/ D 	.Bc/. Taking 1 D �\Bc ,
the additive measure  D 0 C 1 satisfies

.B/ D 0.B/C �\Bc.B/ D 	.B/C �.¿/ D 	.B/

.X/ D 0.X/C �\Bc.X/ D 	.B/C 	.Bc/ D 	.X/:

Furthermore, for any C 2 X ,

.C/ D 0.C/C �.C \ Bc/ > 	\B.C/C 	.C \ Bc/

D 	.B/� 	.Cc \ B/C 	.X/� 	.Cc [ B/

> 	.X/� 	.Cc/ (by submodularity of 	/

D 	.C/:

It follows that  2 core.	/ and .B/ D 	.B/.
Now,

Z

.1A �	Ba
B .A/ �1X/ d\B D

Z

.1A �	Ba
B .A/ �1X/ d	\B D

Z

.1A �	Ba
B .A/ �1X/ d0;

hence by Lemma 7.28 we get Ba
B .A/ D 	Ba

B .A/. Now, for an arbitrary  2 core.	/
satisfying .B/ D 	.B/, we get by Lemma 7.29(iii) Ba

B .A/ 6 	Ba
B .A/, so that

	Ba
B .A/ D max 2core.	/

.B/D	.B/
Ba

B .A/. The corresponding result for 	DS
B follows by

conjugation.
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It remains to prove (7.37). The above considerations show that f˛Ba
B W ˛ 2

MBg � core.	Ba
B /. To prove the reverse inclusion let  2 core.	Ba

B /. Then

	\B 6 	.B/ 6 	\B: (7.38)

For 0 D 	.B/ we can find as above an additive measure 1 being nonzero on Bc

such that  D 0 C 1 2 MB. For any A 2 X , we have

Ba
B .A/ D .A \ B/

.B/
D 	.B/ .A \ B/

	.B/
D  .A \ B/ D  .A/;

where the last equality is explained as follows. First, by (7.38),  .B0/ D 1 for any
B0 � B. Then by additivity, .A/ D  .A\B/C .AnB/, and 1 D  ..AnB/[B/ D
 .A n B/ C  .B/

„ƒ‚…
1

, which implies  .A n B/ D 0. Hence  .A \ B/ D  .A/, and

 D Ba
B as desired. ut

Remark 7.31 Theorem 7.30 clearly shows the difference between the Bayesian and
Dempster rule, and the general rule (see Remark 7.25). The conditional belief and
plausibility functions, Bel.AjB/;Pl.AjB/, as defined by Dempster, are respectively
the most pessimistic and most optimistic estimates of the conditional probability
P.A j B/, among those compatible probability measures satisfying P.B/ D Pl.B/.
Recalling that Pl.B/ is interpreted as the upper probability of B, i.e., Pl.B/ D
maxP2core.Bel/ P.B/, it turns out that only the probability measures maximizing the
probability of B are taken into account. In other words, one considers that the event
B has realized, and consequently only those probability measures maximizing P.B/
are considered. This explains why this rule is sometimes called the revision rule,
because the knowledge pertaining to the set of X of possible answers has been
modified. }

We end this section by relating the Dempster-Shafer rule to combination of
evidences. Dempster [77] mentions the following property.

Theorem 7.32 Let B 2 X such that Pl.B/ > 0. Then

Bel.�jB/ D Bel ˝ uB

where uB is the unanimity game centered on B; i.e., BelB;0.

Proof Let us put Bel0 D Bel ˝ uB, with mass distribution m0, and check if we
recover for Bel0 the conditional belief defined by Dempster. We have, denoting by
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m the mass distribution of Bel and recalling that uB has only B as focal set, for any
A ¤ ¿,

m0.A/ D
P

C2supp.m/
C\BDA

m.C/

1 �P
C2supp.m/
C\BD¿

m.C/

D
P

C2supp.m/
C\BDA

m.C/

1 �P
C2supp.m/

C�Bc
m.C/

D
P

C2supp.m/
C\BDA

m.C/

1 � Bel.Bc/
:

It follows that, for any A ¤ ¿,

Bel0.A/ D
X

C�A;C¤¿
m0.C/ D

P
C�A;C¤¿

P
D\BDC m.D/

1 � Bel.Bc/

D
P

D\B�A;D\B¤¿ m.D/

1 � Bel.Bc/
D
P

D\B�A m.D/ �P
D\BD¿ m.D/

1 � Bel.Bc/

D
P

D�A[Bc m.D/�P
D�Bc m.D/

1 � Bel.Bc/

D Bel.A [ Bc/C m.¿/� Bel.Bc/� m.¿/
1 � Bel.Bc/

D Bel.AjB/:

ut

7.6 The Transferable Belief Model

The transferable belief model is a reworking of the framework of evidence theory
given by Shafer, which was proposed by Smets [309, 313]. It is not related
to any notion of lower and upper probabilities nor imprecise probability, and
likewise Shafer, its primitive ingredient is the mass distribution (called basic belief
assignment). The model has two levels:

(i) The credal level, where the set X is built (set of possible worlds, or states of
nature, etc.), as well as the basic belief assignment m quantifying the belief
committed to some events. This is the level of knowledge representation;

(ii) The pignistic level (from the Latin word pignus, bet), where a probability
measure is built from the belief function synthesizing the knowledge gathered
in the credal level. This is the decision level.
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In the credal level, the only notable difference with the framework proposed by
Shafer is that it is assumed that m.¿/ could be positive (open world assumption),
and consistently, the nonnormalized combination rule is used. Its aim is to build
eventually a belief function from all the pieces of knowledge that are obtained, after
possibly several operations like combination of mass distributions or conditioning.
Assuming that at the final stage some decision has to be made, the belief function is
mapped to the set of probability measures by what is called the pignistic transform.
This transformation into a probability measure is done in order to avoid at the
decision level a Dutch book argument.6

The pignistic transformation is based on the principle of insufficient reason,
used in probability theory since Laplace. It says that in the case of a finite set of
k outcomes, if there is no information relative to the different outcomes, an equal
probability of 1

k is assigned to each outcome. This principle can be extended to the
case of a mass distribution as follows. Consider a mass distribution m on X, and
A 2 supp.m/. As explained in Sect. 7.2, the quantity m.A/ represents the quantity
of belief committed to the event A only, and not to its proper subsets. Since there
is no information regarding the elements in A, the principle of insufficient reason
applied to A tells that an equal probability should be assigned to each element in A.
However, in this case, the initial quantity of “probability” to share is not 1, but m.A/.
Therefore, to each element of A, a probability equal to m.A/

jAj is assigned. Doing so
for each A 2 supp.m/ and summing, we come up with the probability distribution
BetPm on X, given by

BetPm.x/ D
X

A3x

m.A/

jAj .x 2 X/: (7.39)

The above equation defines what is called the pignistic transform, which to each
mass distribution m assigns a probability distribution BetPm (and therefore is not a
transform in the sense we used in Chap. 2, Sect. 2.12). With some abuse of notation,
we use the same symbol BetPm for the corresponding probability measure.

Keeping in mind that m is the Möbius transform of the associated belief function
Bel, the comparison of (7.39) and (2.41) reveals that BetPm.x/ is nothing other than
IBel.fxg/; i.e., the pignistic probability distribution is the interaction transform of Bel
restricted to singletons. Recall that this is precisely the Shapley value associated to
Bel, denoted by Sh.Bel/ (see Sect. 2.11), hence the pignistic transform coincides
with the Shapley value.

Because
P

A2supp.m/ m.A/ D 1 and m is nonnegative, it is clear from (7.39) that
the pignistic probability distribution is indeed a probability distribution. Moreover,
the following property is noteworthy.

6A Dutch book is a sequence of bets so that the agent/decision maker is doomed to a sure loss if his
subjective belief on events is not representable by a probability measure; see Sect. 5.3.1 for details.
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Lemma 7.33 Let m be a mass distribution on X and Bel be the corresponding belief
function. Then the pignistic probability measure BetPm is compatible with Bel; i.e.,
BetPm.A/ > Bel.A/ for every A � X.

Proof For any A � X, by nonnegativity of m,

BetPm.A/ D
X

x2A

X

B3x

m.B/

jBj >
X

x2A

X

B3x
B�A

m.B/

jBj D
X

B�A

m.B/

jBj
X

x2B

1

D
X

B�A

m.B/ D Bel.A/:

ut
Remark 7.34

(i) The name “pignistic” probability or transform was coined in 1990 by Smets
[310], and already proposed in 1982 by Dubois and Prade [102], but none
of them noticed the connection with the Shapley value. Smets proposed
several axiomatizations of the pignistic transform (see, e.g., [312, 313]), which
resembles the one given by Shapley [298].

(ii) The pignistic transform is an example of a mapping assigning a probability
distribution to some belief function. Other mappings can be imagined as well
(Sect. 7.7.3). In addition, this mapping is obtained by a sharing of the mass
distribution: it is therefore a sharing value and hence an element of the selectope
of Bel (see Sect. 3.5), more precisely, it is the uniform sharing value (Exam-
ple 3.61). Lemma 7.33 is then a simple consequence of Theorem 3.62(iii).

}

7.7 Possibility Theory

Possibility theory is a theory of representation of uncertainty based on possibility
measures (Sect. 2.8.3). It was initiated by Zadeh [357], in relation with the theory of
fuzzy sets [356], and developed by Dubois and Prade [106].

There are several ways to present possibility theory, each of them having its
own interest. The first one is to see it as a (quantitative) theory of uncertainty that
is parallel to probability theory, changing addition and multiplication (the basic
operations in probability theory corresponding to the union of disjoint events and
the intersection of independent events) into maximum and minimum. The second
view is to see it as a particular case of Dempster-Shafer theory, which immediately
connects it to upper and lower probabilities, as well as to any of the interpretations
of Dempster-Shafer theory this chapter has presented. The third view is related to
logic and leads to a qualitative view of the representation of uncertainty, as well as
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a new theory of reasoning with approximate information. The present book being
rather far from the field of logic, we essentially stick to the two first views, with
a natural emphasis on the second one. The readers interested into the logical view
should consult [100, 112]. Comprehensive surveys covering most of these aspects
can be found in [109, 110, 113]. Also, a measure-theoretic mathematical analysis of
possibility measures was done by de Cooman, see, e.g., [70–72].

7.7.1 The Framework

Throughout this section X is a finite set with jXj D n. The basic piece of knowledge
is supposed to be a possibility distribution � W X ! Œ0; 1�, where �.x/ for x 2 X
quantifies the degree to which it is possible that element x is the true outcome of
the experiment (or true answer to a question, true state of nature, etc.), with the
following convention:

• �.x/ D 0 means that it is impossible that x is the true outcome/state of nature;
• �.x/ D 1 means that x is quite possibly the true state, more exactly, there is no

evidence that x could not be the true state of nature;
• �.x/ > �.x0/ means that x is more plausible than x0.

It is important to note that in the absence of information (evidence), the default
distribution is the constant function 1X. Hence, a possibility distribution is built by
adding negative information: any added piece of evidence diminishes the possibility
of some outcome/state of nature. In the closed world assumption, the true state of
nature lies in X, therefore it must be that �.x/ D 1 for some x 2 X. It follows that
the most informative situation is when the possibility of every x 2 X is 0 but one, say
x0, for which �.x0/ D 1. This motivates the next definition: possibility distribution
� is more specific (or informative) than � 0 if �.x/ 6 � 0.x/ for every x 2 X; see
Remark 7.35 for additional material on distributions and their interpretation.

From a given possibility distribution � , one derives a possibility measure …
defined by

….A/ D sup
x2A

�.x/ .A 2 2X/: (7.40)

The interpretation of….A/ is similar to the one for belief and plausibility functions:
it quantifies the degree to which it is possible that the true state of nature lies in A.
Note that �.x/ D ….fxg/ for every x 2 X, and… is a normalized capacity satisfying
maxitivity:

….A [ B/ D ….A/ _….B/ .A;B 2 2X/: (7.41)

Conversely, any set function … vanishing on the empty set, satisfying ….X/ D 1

and (7.41) is a possibility measure. Note that the latter property is no longer true
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when X is infinite: take for example X D N and define… by….A/ D 0 if A is finite,
otherwise ….A/ D 1. Then … is a maxitive capacity, but no possibility distribution
can generate it. Indeed, supposing such a distribution � exists, there would exist
n 2 N such that �.n/ D 1. Then….fng/ D 1, contradicting the definition of ….

It is immediate from the definition that

….A \ B/ 6 ….A/ ^….B/ for every A;B 2 2X: (7.42)

Also, for any A 2 2X, either ….A/ D 1 or ….Ac/ D 1. The latter property implies
that, unlike probability measures, the value….A/ does not give any clue on the value
of ….Ac/, except that one of them should be equal to 1. Assuming 1 D ….A/ >
….Ac/, the quantity ….A/ � ….Ac/ represents in a sense the certainty that the true
state of nature lies in A rather than in Ac. We then naturally introduce the quantity
Nec.A/ D 1 � ….Ac/, representing the certainty or necessity that the true state of
nature lies in A, and hence defining what is called a necessity measure. From the
definition, we immediately obtain that

Nec.A/ D 1 � sup
x 62A

�.x/ D inf
x 62A
.1 � �.x// .A 2 2X/; (7.43)

Nec.A \ B/ D Nec.A/ ^ Nec.B/ .A;B 2 2X/: (7.44)

Moreover, we have Nec.A [ B/ > Nec.A/ _ Nec.B/ for all A;B 2 2X .
Nec.A/ D 1 indicates an event A with full certainty because ….Ac/ D 1 �

Nec.A/ D 0, which means that the complement event is impossible. On the other
hand, Nec.A/ D 0 means that there is no certainty on A, because the complement
event Ac is fully possible (….Ac/ D 1). In addition, note that N.A/ > 0 can happen
only if ….A/ D 1, which is in accordance with the intuition that an event can have
some certainty only if it is fully possible. Figure 7.1 depicts the possible values taken
by ….A/;Nec.A/ for a given event A, with the interpretation of remarkable points.
As it will be shown in Sect. 7.7.2, possibility and necessity measures are special
cases of plausibility and belief functions, respectively. We show in Fig. 7.1 the locus
of the possible pairs .Pl.A/;Bel.A//. We see clearly how possibility and necessity
measures, as well as probability measures, are limit cases of plausibility and belief
functions. Moreover, these two limit cases have no common point, except the trivial
ones.

Still two kinds of measures derived from a possibility distribution are noteworthy.
The guaranteed possibility measure (Dubois and Prade [107]) is defined by

�.A/ D inf
x2A
�.x/ .A 2 2X/:
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0
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1

Nec(A) (Bel(A))

Π(A) (Pl(A))
impossible event

total ignorance

total certainty
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y

Fig. 7.1 Possibility and necessity of an event A: the thick line indicates the locus of the pair
.….A/;Nec.A//. The yellow triangle is the locus of the pair .Pl.A/;Bel.A//, and the dashed line
indicates the case where Bel; Pl coincide with a probability measure

This set function is anti-monotone, and satisfies �.¿/ D 1 (see our convention,
Sect. 1.1(xxi)). �.A/ is the degree to which all elements in A are possible. The
conjugate measure is called the potential certainty measure:

r.A/ D 1 ��.Ac/ D sup
x2Ac

.1 � �.x// .A 2 2X/:

It is also anti-monotone and satisfies r.X/ D 0. The quantity r.A/ estimates to
what extent there exists at least one element outside A that is impossible (which is a
necessary condition that A is somewhat certain). Their characteristic properties are

�.A [ B/ D �.A/ ^�.B/ (7.45)

r.A \ B/ D r.A/ _ r.B/ (7.46)

for every A;B 2 2X . Comparison of (7.41), (7.44), (7.45) and (7.46) shows that the
four measures …;Nec; �;r exhaust all combinations of transformation between
[;\ and _;^. See Remark 7.35 below for further interpretation in a slightly
different framework.

Remark 7.35 There exists in some sense a “bipolar version” of the above frame-
work, proposed by Dubois and Prade (see [111] for a survey). We recall that �
encodes a negative information, in the sense that �.x/ D 0 excludes x as a possible
state of nature, while �.x/ D 1 does not bring any information on x. One may
then introduce a second kind of possibility distribution, called actual or guaranteed
possibility and denoted by ı, which encodes a positive information: ı.x/ expresses
to what extent x is supported by evidence. Here ı.x/ D 1 means that x is actually
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fully possible (e.g., because it has been observed) and ı.x/ D 0 does not bring any
information. By contrast, � is a distribution expressing potential possibility, if one
may say so. The following example illustrates this.

Example 7.36 (Dubois and Prade [111]) Let X be the set of possible opening hours
of a museum in some town. You may know that the museum is opened around 2 p.m.
(because when passing in front of it at this time, you have seen it was open). This is
a positive piece of information that can be encoded by a distribution ı. On the other
hand, you guess that due to usual working time regulations, the museum cannot
be open during the night, say, from 10 p.m. to 8 a.m. This is a negative piece of
information that can be encoded by a distribution � . Þ

Evidently, one has to impose ı.x/ 6 �.x/ for all x 2 X. In the case of the bipolar
model, the definition of the guaranteed possibility measure has to be modified as
follows:

�.A/ D inf
x2A
ı.x/ .A 2 2X/:

}
Remark 7.37 Although the term “possibility measure” was coined by Zadeh in
1978 [357], the idea of maxitive measures was introduced before in several domains
and with different purposes. Let us cite for example Shackle7 who introduced the
notion of potential surprise in 1961 [294], Shilkret [304] who initiated measure
theory with maxitive measures in 1971, and Cohen [55], who introduced “Baconian
probabilities” in the context of legal reasoning.

Another noticeable example is given by the works of Litvinov and Maslov,
around idempotent calculus, related to .max;C/-algebra. Maxitive measure are
called by them idempotent measures (see [224, 225] and the references therein).
}

7George Lennox Sharman Shackle (Cambridge, 1903 – 1992) is an English economist who
developed a whole theory of decision leaving room for unpredictable hypotheses (causing
surprise), by opposition to the standard framework of Savage based on probability theory. We
quote from [294, p. 68] his definition of potential surprise:

It is the degree of surprise to which we expose ourselves, when we examine
an imagined happening as to its possibility, in general or in the prevailing
circumstances, and assess the obstacles, tensions and difficulties which arise
in our minds when we try to imagine it occurring, that provides the indicator
of degree of possibility. This is the surprise we should feel, if the given thing
did happen; it is potential surprise.

See the interesting analysis by Fioretti [140] of the theory of potential surprise, compared to
evidence theory.
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7.7.2 Link with Dempster-Shafer Theory

Theorem 7.38 Let m be a mass distribution such that m.¿/ D 0. Then the
corresponding belief function is a necessity measure if and only if supp.m/ is a
chain in 2X.

Moreover in this case, letting supp.m/ D fA1; : : : ;Aqg with A1 � A2 � � � � � Aq,
the corresponding possibility distribution � is given by

�.x/ D 1 for x 2 A1

�.x/ D 1 � m.A1/ for x 2 A2 n A1

:::
:::

�.x/ D
qX

iDk

m.Ai/ for x 2 Ak n Ak�1

:::
:::

�.x/ D m.Aq/ for x 2 Aq n Aq�1
�.x/ D 0 otherwise.

Proof )/ See Theorem 2.36.
(/ Suppose supp.m/ is a chain and consider any A;B 2 2X . We have to prove

that (7.44) holds for A;B, where Nec is the belief function induced by m. Recall that
Nec.A/ D P

C�A m.C/. We have:

Nec.A/ D
X

C�A\B

m.C/C
X

D�A
Dn.A\B/¤;

m.D/

Nec.B/ D
X

C�A\B

m.C/C
X

D�B
Dn.A\B/¤;

m.D/:

Observe that by the chain assumption, the second term in the right-hand side cannot
be nonzero for both equations, hence equality (7.44) holds.

For the proof of the second statement, see formulas (2.24) and (2.25). ut
Remark 7.39 Due to the characteristic property that the focal sets of a necessity
measure form a chain, these belief functions are sometimes called consonant belief
functions, and accordingly one can speak of consonant mass distribution. It is
interesting to note that, by contrast, a belief function is a probability measure if
and only if its focal sets are reduced to singletons (Remark 7.6), in other words,
the focal sets form an antichain in 2X . This clearly shows, in a different way than
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Fig. 7.1, how possibility theory and probability theory differ, and that they can never
coincide, except on trivial cases. }

We now show using Theorem 7.38 that the commonality function associated to
a consonant mass distribution is in fact the guaranteed possibility. Indeed, take a
mass distribution m with supp.m/ D fA1; : : : ;Aqg, A1 � A2 � � � � � Aq, and
corresponding possibility distribution � . We obtain for any A 2 2X

q.A/ D
X

B	A

m.B/ D
X

i�`0
m.Ai/ D �`0 ;

with `0 such that �`0 D minx2A �.x/. We conclude that q.A/ D �.A/.
This relation sheds light on the interpretation of the commonality function. Recall

also that the commonality function is a doubt measure in the sense of random sets
functions (also called totally [-monotone anti-capacity; see Sect. 7.2.3). It follows
that the potential certainty, conjugate of the guaranteed possibility, is a disbelief
measure (totally \-alternating anti-capacity).

7.7.3 Links Between Possibility Measures and Probability
Measures

As necessity measures are special cases of belief functions, all results shown in
Sect. 7.4 concerning compatible probability measures still hold:

(i) The set of extreme points of the set of probability measures compatible with
Nec (denoted by core.Nec/) is the set of marginal vectors associated to Nec;

(ii) core.Nec/ is the selectope of Nec; i.e., each compatible probability measure is
a sharing value and vice-versa. In particular, the pignistic transform (uniform
sharing value) yields a particular compatible probability measure;

(iii) The lower envelope of the set of compatible probability measures is Nec.

Yet, there are other noteworthy results in the particular case of necessity measures
that we present below. In what follows, we say that a probability distribution is
compatible with a possibility distribution if the corresponding measures are.

The following result characterizes imprecise probability measures yielding
possibility/necessity measures.

Theorem 7.40 (When imprecise probability measures yield necessity measures)
(Dubois and Prade [108]) Let P be a set of probability measures of the form

P D fP probability measure on X W P.Ai/ > ˛i; i D 1; : : : ; qg

with ¿ ¤ A1 � A2 � � � � � Aq and 0 < ˛1 < � � � < ˛q. Then the upper and lower
envelopes of P are a pair of conjugate possibility and necessity measures.
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Conversely, any possibility measure … is the upper envelope of a set of
probability measures P of the above type, with

Ai D fx 2 X W �.x/ > � ig; ˛i D 1 � � iC1 .i D 1; : : : ; q/

where � is the associated possibility distribution whose range (with 0 excluded) is
ran� n f0g D f�1; : : : ; �qg, with 1 D �1 > �2 > � � � > �q > 0 D �qC1.

Proof )/ Let m be a mass distribution defined by supp.m/ D fA1; : : : ;Aqg and
m.Ai/ D ˛i � ˛i�1, i D 1; : : : ; q with ˛0 D 0. The corresponding Bel is a necessity
measure Nec by Theorem 7.38. Let us prove that the lower envelope P� coincides
with Nec for every A 2 2X .

If A 6� Ai for every i D 1; : : : ; q, there is no constraint on P.A/, therefore
P�.A/ D 0 D P

Ai�A m.Ai/ D Nec.A/. Otherwise, take the largest i such that
A � Ai. Then P.A/ > P.Ai/ > ˛i D N.Ai/, hence the minimum is P�.A/ D
N.Ai/ D N.A/.

(/ Since Nec associated to … is exact, we have that Nec is the lower envelope
of core.Nec/ D fP W P.A/ > N.A/;A 2 2X;P.X/ D 1g. By Theorem 7.38, we
know that the mass distribution m associated to Nec has support A1; : : : ;Aq with
¿ ¤ A1 � � � � � Aq. Let us define ˛1; : : : ; ˛q as follows:

Nec.A1/ D m.A1/ D ˛1

:::
:::

Nec.Ai/ D m.A1/C m.A2/C � � � C m.Ai/ D ˛i

:::
:::

Nec.Aq/ D 1 D ˛q:

Hence, with P D core.Nec/, we have established that any P 2 P satisfies P.Ai/ >
˛i for i D 1; : : : ; q, and that A1; : : : ;Aq and ˛1; : : : ; ˛q satisfy the requirements. It
remains to show that any other inequality P.B/ > Nec.B/, B ¤ A1; : : :Aq, of the
core of Nec is satisfied.

If B 6� Ai for every i, then Nec.B/ D 0, and P.B/ > 0 is always satisfied.
Otherwise, take the largest i such that B � Ai. We have N.B/ D P

j6i m.Aj/, and by
additivity of P:

P.B/ D P.Ai/
„ƒ‚…
>˛i

C P.B n Ai/
„ ƒ‚ …

>0

;

hence P.B/ > ˛i D Nec.B/, as desired.
ut

The next result concerns the pignistic transform for possibility measures (proposed
by Dubois and Prade in [102, 103]).



7.7 Possibility Theory 421

Theorem 7.41 (Pignistic transform for possibility measures) Let � be a pos-
sibility distribution on X D fx1; : : : ; xng, numbering the elements of X such that
�.x1/ > �.x2/ > � � � > �.xn/. The following holds.

(i) The pignistic probability distribution BetP� is compatible with � and is given
by

BetP�.xi/ D
nX

jDi

�.xj/ � �.xjC1/
j

.i D 1; : : : ; n/; (7.47)

with �.xnC1/ D 0;
(ii) Every compatible probability distribution p (and therefore, BetP� as well)

satisfies

�.x/ > �.x0/ ) p.x/ > p.x0/ .x; x0 2 X/I

Proof

(i) BetP� is a probability distribution compatible with � by Lemma 7.33, and its
expression is straightforwardly obtained from Theorem 7.38.

(ii) If p is a compatible probability distribution, it is a sharing value of Nec, the
associated necessity measure, with some sharing system �. Letting m be the
Möbius transform of Nec and Ai D fx1; : : : ; xig, we have, by nonnegativity
of m,

p.xi/ D
nX

jDi

�.Aj; xi/m.Aj/ >
nX

jDi0

�.Aj; xi0/m.Aj/;

for any i0 > i, which proves the result.
ut

Remark 7.42 The pignistic probability distribution is the most even or uniform
compatible probability distribution from a local point of view because it distributes
equally the mass assigned to focal sets. However, this is not true from a global
point of view, because the pignistic probability distribution does not maximize
the Shannon entropy H among all possible compatible probability distributions, as
shown by the next example: Take X D fx1; x2g and �.x1/ D 1, �.x2/ D 0:2. Then

BetP�.x1/ D 0:8C 1

2
0:2 D 0:9; BetP�.x2/ D 1

2
0:2 D 0:1;
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which yields H.BetP�/ D �0:9 log 0:9�0:1 log 0:1 � 0:1412. Now, modifying the
equal distribution of 0.2 on fx1; x2g as follows:

P0.x1/ D 0:8C 1

2
0:2 � 0:01 D 0:89; P0.x2/ D 1

2
0:2C 0:01 D 0:11;

we obtain H.P0/ � 0:1505. }
The pignistic transform is a canonical way to obtain a probability distribution

from a possibility distribution. The converse problem can be considered too: Given a
probability distribution, which possibility distribution to choose among those which
are compatible? The most specific (i.e., the most informative) one is given in the
following theorem.

Theorem 7.43 (From probability to possibility) (Dubois and Prade [102, 104])
Let p be a probability distribution on X D fx1; : : : ; xng, supposing p.x1/ > � � � >
p.xn/. The most specific possibility distribution �; i.e., minimizing

P
x2X �.x/,

which is compatible with p is given by

�.xi/ D
nX

jDi

p.xj/ .i D 1; : : : ; n/:

Proof From its definition, we have clearly �.x/ > �.x0/ if p.x/ > p.x0/. Then, for
any A � X, letting xi0 be the element in A with smallest index, we have

….A/ D max
x2A

�.x/ D �.xi0 / D
nX

jDi0

p.xj/ >
X

x2A

p.x/ D P.A/;

where … is the possibility measure associated to � . Hence p is compatible with
� . Now, consider � 0 with � 0.xi/ < �.xi/ for some xi 2 X. Then the associated
possibility measure…’ would satisfy

…0.fxi; : : : ; xng/ D � 0.xi/ <

nX

jDi

p.xi/ D P.fxi; : : : ; xng/;

and therefore � 0 would not be compatible with p. ut
Remark 7.44 (Relation with Lorenz majorization) The above transformation is
closely related to the majorization relation of Lorenz (see Hardy et al. [192], and
Marshall and Olkin [236]). Given two vectors a; b 2 R

n and assuming a1 > � � � > an

and b1 > � � � > bn, we say that a (weakly) majorizes b if

jX

iD1
ai >

jX

iD1
bi . j D 1; : : : ; n/:
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If in addition
Pn

iD1 ai D Pn
iD1 bi (like for probability distributions), this is

equivalent to
Pn

iDj ai 6
Pn

iDj bi for all j. It follows that given two probability
distributions p; p0 with corresponding possibility distributions �; � 0, p majorizes p0
if and only if � 6 � 0 pointwise. In [99], Dubois and Hüllermeier interpret this by
saying that p is more peaked than p0, that is, p is more centered around its peak
value than p0. It is known from Hardy et al. that p majorizes p0 if and only if for any
strictly concave function ',

nX

iD1
'.pi/ 6

nX

iD1
'.p0

i/;

(also proved in [99]), which implies that the entropy of p is smaller than the
entropy of p0 whenever p majorizes p0. Indeed, the Shannon entropy corresponds
to '.x/ D �x log x, which is strictly concave. We also mention another remarkable
result proved by Hardy et al.: a majorizes b if and only if there exists a bistochastic
matrix M such that b D Ma. }

7.7.4 The Possibilistic Core and Totally Monotone Anticore

By analogy with the notion of core of a game, the possibilistic core of a normalized
capacity 	 is the set of possibility measures dominating 	:

��core.	/ D f� possibility distribution on X W ….A/ > 	.A/;8A � Xg:

Obviously, ��core.	/ is never empty since the possibility distribution �.x/ D 1

8x 2 X always belongs to ��core.	/ for every normalized capacity 	. The next
theorem gathers the main results on the possibilistic core (recall that S.n/ is the set
of permutation on f1; : : : ; ng).

Theorem 7.45 Let 	 be a normalized capacity on X. The possibilistic core of 	
has the following properties:

(i) ��core.	/ is a nonempty upper semilattice, whose top element is 1X;
(ii) For any permutation � 2 S.n/, the possibility distribution ��;	 defined by

��;	.x�.i// D 	.fx�.i/; : : : ; x�.n/g .i 2 Œn�/ (7.48)

is an element of the possibilistic core. Moreover, denoting by …�;	 the
corresponding possibility measure,

…�;	.A�i / D 	.A�i / .i 2 Œn�/ (7.49)

with A�i D fx�.i/; : : : ; x�.n/g;
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(iii) 	 D min
�2��core.	/

… D min
�2S.n/…

�;	;

(iv) �
Z

f d	 D min
�2��core.	/

�
Z

f d… and
Z

f d	 D min
�2��core.	/

Z

f d…;

(v) If 	 is strictly monotone, the minimal elements of ��core.	/ are the possibil-
ity distributions ��;	, for all � 2 S.n/.

Proof

(i) The assertion on the top element is trivial, and proves nonemptiness. Now, if
�; � 0 2 ��core.	/, then obviously the pointwise maximum of � and � 0 is
also a possibility distribution which dominates 	.

(ii) Let us fix �; 	 and prove that …�;	.A/ > 	.A/ for every A, with equality if
A D A�i for some i.

Suppose A D A�i . Then

…�;	.A�i / D n
max
kDi

��;	.x�.k//

D ��;	.x�.i// .by monotonicity of 	/

D 	.A�i /:

Suppose now A is not one of the A�i ’s. Find the greatest i such that A�i � A,
and observe that x�.i/ 2 A. Then

	.A/ 6 	.A�i / D …�;	.A�i / D ��;	.x�.i// D …�;	.A/:

(iii) Consider A � X, and a permutation � such that A D A�i for some i. Then
	.A/ D …�;	.A/, which proves the result.

(iv) By monotonicity of the Sugeno integral [Theorem 4.43(vii)], we have

�
Z

f d	 6 �
Z

f d…

for any � 2 ��core.	/. It suffices then to find a core element such that
equality occurs. Take � 2 S.n/ such that f�.1/ 6 � � � 6 f�.n/. By definition
of the Sugeno integral and using (ii)

�
Z

f d	 D
n_

iD1

�
f�.i/ ^ 	.A�i /

�

D
n_

iD1

�
f�.i/ ^…�;	.A�i /

�
;

hence ��;	 is the desired core element. The proof is much the same with the
Choquet integral.
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(v) We prove that ��;	 is minimal, for every � 2 S.n/. Observe that by strict
monotonicity of 	,

1 D ��;	.x�.1// > � � � > ��;	.x�.n//:

Take i 2 N and define a possibility distribution� 0 by � 0.x�.i// D ��;	.x�.i//��
for some � > 0, and � 0; ��;	 identical otherwise. Then, by the above
observation,

	.A�i / D …�;	.A�i / D ��;	.x�.i// > �
0.x�.i// _ � � � _ � 0.x�.n// D …0.A�i /;

hence � 0 is not a core element. Now, by (iii), any minimal element must be of
the form ��;	.

ut
Remark 7.46

(i) The possibilistic core was proposed and studied by Dubois et al. [114].
However, Denneberg [81] already in 2000 proposed to consider the set of belief
functions dominated by some capacity, which he called the totally monotone
(anti)core, which amounts to considering the core of plausibility functions, a
set including the possibilistic core. He showed that any capacity can be written
as a minimum over the core of plausibility functions, and identified …�;	 as
special plausibility functions coinciding with 	 on the maximal chain induced
by � .

(ii) It is interesting to compare the classical core (see Chap. 3) with the possibilistic
core. In the latter, everything is very simple compared to the classical core:
every capacity is balanced (its core is nonempty) and exact (it coincides with
the lower envelope of the core). Moreover, the possibilistic core is not a convex
polyhedron but is an upper semilattice. The particular possibility distributions
��;	 play the rôle of the marginal vectors in the classical core: just as the
latter are vertices of the core for convex games, the possibility distributions
��;	 are minimal elements of the possibilistic core when the capacity is strictly
monotone.

}
Finding the minimal elements of the possibilistic core when the capacity is not

strictly monotone is more difficult, and this problem was solved by Dubois et
al. [114]. Its solution is based on selectors, as in the definition of the selectope
(Sect. 3.5). We recall that a selector is a function ˛ W 2X n f¿g ! X selecting
an element in each nonempty set. We denote the set of selectors on X by S.X/. A
selector is consistent if for any nonempty sets S;T such that S � T and ˛.T/ 2 S,
then ˛.S/ D ˛.T/. For a given selector ˛ and a normalized capacity 	, define the
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following possibility distribution:

�˛;	.x/ D max
S�XW˛.S/Dx

m	�.S/ .x 2 X/;

where m	
� is the ordinal Möbius transform of 	 [see (4.64)]. The corresponding

possibility measure is denoted by…˛;	. We summarize the main properties of these
distributions below.

Theorem 7.47 Let 	 be a normalized capacity on X. The following holds.

(i) For any selector ˛, �˛;	 2 ��core.	/;
(ii) 	 D min˛2S.X/ …˛;	;

Proof

(i) For any set A � X, we have

…˛;	.A/ D max
x2A

max
T W˛.T/Dx

m	�.T/ > max
T�A

m	�.T/ D 	.A/;

the last equality coming from the definition of the ordinal Möbius transform.
Now, if A D X, equality holds throughout, so that �˛;	 is a possibility
distribution.

(ii) Let us consider A � X. From (i), it suffices to build a selector ˛ such that
…˛;	.A/ D 	.A/. Take S � A such that m	�.S/ D 	.A/ and put ˛.S/ D x for
some x 2 S. Now, for any set T such that m	�.T/ > 	.A/, put ˛.T/ D y for
some y 62 A. This is possible because by monotonicity of 	, T 6� A. It follows
that …˛;	.A/ D �˛;	.x/ D 	.A/.

ut
It should be noted that, contrarily to the classical selectope where marginal
vectors correspond to selector values where the selector is consistent, possibility
distributions generated by a permutation cannot always be generated by a selector:
take X D fx1; x2g and 	.X/ D 	.fx2g/ D 1, 	.fx1g/ D 0:5 and consider the
identity permutation. Then the possibility distribution generated by this permutation
is .1; 1/. Because m	�.X/ D 0 and m	�.fx1g/ D 0:5, there is no way to recover this
distribution with a selector.

Dubois et al. give in [114] an algorithm to find the minimal elements of the
possibilistic core, which are possibility distributions induced by selectors. The
corresponding selectors are found as follows:

Step 0. Put F D fS 2 2X W m	
�.S/ > 0g and order the sets in decreasing value of

the ordinal Möbius transform;
Step 1. Pick the first set S in F ; select an element x 2 S; delete S from F ; for any

set T in F such that T 3 x, put ˛.T/ D x and delete T from F ;
Step 2. Repeat Step 1 till F D ¿.
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Observe that the selector given by the algorithm is consistent. The proof of
minimality and completeness is given in [114].

7.8 Belief Functions and Possibility Measures on Lattices
and Infinite Spaces

We give a brief account of results when belief functions are not defined on the power
set of some finite set X, but on some more general structure, especially a lattice.

7.8.1 Finite Lattices

This case was considered by the author in [167], along the line of the work of
Barthélemy [18], and completed by Zhou [359]. Some of these results have been
presented in Chap. 2, Sect. 2.19.2, where the lattice is a lattice of subsets of X. We
do not impose this restriction here, which is in fact unnecessary for all the results
of Sect. 2.19.2. The readers should consult Sect. 1.3.2 for all definitions and useful
results on lattices.

Belief Functions

Let .L;6/ be a finite lattice, with top and bottom elements denoted by >;?
respectively, hereafter always abbreviated by L. By a game on L, we mean a mapping
v W L ! R such that v.?/ D 0. A capacity 	 on L is an isotone game. It is
normalized if in addition 	.>/ D 1. A function Bel W L ! Œ0; 1� is a belief function
on L if Bel.?/ D 0, Bel.>/ D 1, and its Möbius transform m is nonnegative. Recall
that the Möbius transform is defined for functions on lattices in Remark 2.32(ii),
and we have

Bel.x/ D
X

y6x

m.y/ .x 2 L/: (7.50)

By contrast to the classical case L D 2X , it is not possible to give a general
inverse formula for (7.50), because it depends on the structure of L. Note that by
nonnegativity of m, Bel is an isotone function on L, hence it is a normalized capacity.

The commonality function is defined naturally as the co-Möbius transform of the
belief function; i.e.,

q.x/ D
X

y>x

m.y/ .x 2 L/: (7.51)
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Plausibility Functions

Plausibility functions can be defined as in the classical case as being the conjugate
of a belief function, provided a suitable definition of conjugation is taken. To this
end, we suppose that L is autodual. We define a _-negation as a bijective mapping
n W L ! L satisfying n.x _ y/ D n.x/ ^ n.y/, for all x; y 2 L, and n.>/ D ?. The
following is easy to show.

Lemma 7.48 (Grabisch [167]) Let L be an autodual lattice. Then, there exists a _-
negation n on L. Moreover, any such negation satisfies the following properties:

(i) n.?/ D >;
(ii) n�1.x ^ y/ D n�1.x/ _ n�1.y/;

(iii) x is join-irreducible (respectively, meet-irreducible) if and only if n.x/ is meet-
irreducible (respectively, join-irreducible).

Observe that there is in general no unique _-negation on an autodual lattice L.
Indeed, it suffices to take for n.x/ the element in the Hasse diagram of L@ that
takes the position of x in L. But there are in general several ways to draw Hasse
diagrams, each of them inducing a different _-negation. Another typical example
of _-negation is n.x/ D x0, the complement of x, provided that L is complemented.
Also, n�1 ¤ n in general, so that n has not the property of involution (n ı n D Id) in
general.

Based on these considerations, the conjugate of a capacity 	 on L, relative to
some _-negation n, is a capacity defined as

	.x/ D 	.>/ � 	.n.x// .x 2 L/:

Now, the conjugate of a belief function Bel is called a plausibility function: Pl D
Bel. Recall that its definition depends on the chosen _-negation.

Remark 7.49 Observe that 	 D 	 if and only if n is involutive, implying that
the conjugate relative to n of a plausibility function Pl D Bel, where the latter
conjugate is taken relative to n, gives back Bel if and only if n is involutive. If n is
not involutive, one should take the conjugate relative to n�1 (the property to be a

_-negation is irrelevant in the definition of the conjugation), denoted by .�/�1
. Then

Bel D Pl
�1 D Bel

�1
. }

k-Monotone and Totally Monotone Functions

Here the whole subsection on k-monotone and totally monotone games of
Sect. 2.19.2 can be copied and pasted here, substituting lattices of sets by lattices.
For the sake of convenience, we recall the main elements of it.
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A game v on L is k-monotone for some k > 2 if for any family of elements
x1; : : : ; xk of L,

v
� k_

iD1
xi

�
6

X

I�f1;:::;kg
I¤¿

.�1/jIjC1v
�^

i2I

xi

�
: (7.52)

Now, v is totally monotone if it is k-monotone for every k > 2. The finiteness of L
implies the following result.

Lemma 7.50 (Barthélemy [18]) Let v be a game on a lattice L. Then v is totally
monotone if and only if v is .jLj � 2/-monotone.

The fact that L is modular or distributive induces some properties on the existence
of k-valuations, that is, functions satisfying (7.52) with equality, and 1-valuations
(functions that are k-valuations for any k > 2). The following is well known in
lattice theory (see, e.g., Birkhoff [30, Chap. X]).

Lemma 7.51 Let L be a lattice. The following holds.

(i) L is modular if and only if it admits a strictly monotone 2-valuation;
(ii) L is distributive if and only if it admits a strictly monotone 3-valuation;

(iii) L is distributive if and only if it is modular and every strictly monotone 2-
valuation is a 3-valuation;

(iv) L is distributive if and only if it is modular and every strictly monotone 2-
valuation is an 1-valuation.

Interestingly, no such restriction holds for isotone and totally monotone functions.

Lemma 7.52 (Barthélemy [18]) Any lattice L admits an isotone and totally mono-
tone game on L.

The next result is fundamental because it establishes the link between belief
functions on L and totally monotone capacities (which are called belief measures
in Sect. 2.8.4).

Theorem 7.53 (Barthélemy [18] for the “if” part, Zhou [359] for the “only if”)
Let 	 be a capacity on a lattice L. Then 	 has a nonnegative Möbius transform if
and only if 	 is totally monotone.

Properties of Belief Functions

We give some properties of belief functions related to the nonnormalized com-
bination rule ˝�. It is easily checked that Lemma 7.18 is still valid: if q1; q2
are the commonality functions associated to belief functions Bel1;Bel2, then the
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commonality function q associated to Bel D Bel1 ˝� Bel2 is given by

q.x/ D q1.x/q2.x/ .x 2 L/: (7.53)

More importantly, Theorem 7.19 on the decomposition of a belief function into
simple belief functions is still valid, and we give a proof of it in this general case.
We restate it in its general form, as well as the definition of a simple belief function.

A simple belief function is a belief function whose Möbius transform has the
following form:

my;˛.x/ D

8
ˆ̂
<

ˆ̂
:

1 � ˛; if x D y

˛; if x D >
0; otherwise

; (7.54)

for some y 2 L; y ¤ >;?, and ˛ 2 Œ0; 1Œ.
Theorem 7.54 (Decomposition of a belief function into simple belief functions)
(Grabisch [167]) Let Bel be a belief function on L such that its Möbius transform

m satisfies 0 < m.>/ < 1. Then m can be decomposed as

m D ˝*

y2Lnf?;>g
my;˛y ;

with

˛y D
Y

x>y

q.x/�	.x;y/ .y 2 L n f?;>g/;

where 	.x; y/ is the Möbius function of L [see (2.19)].

Proof We try to find quantities ˛y such that

m.x/ D ˝*

y2Lnf?;>g
my;˛y.x/ .x 2 L/:

This expression can be written in terms of the commonality functions using (7.53):

q.x/ D
Y

y2Lnf?;>g
qy;˛y.x/ .x 2 L/; (7.55)

where qy;˛y is the commonality function induced by my;˛y :

qy;˛y.x/ D
(
1; if x 6 y

˛y; otherwise.
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From (7.55), we obtain:

log q.x/ D
X

y2Lnf?;>g
log qy;˛y.x/ D

X

y 6>x;y¤>
log˛y

D
X

y2Lnf?;>g
log˛y �

X

y>x

log˛y;

letting ˛> D ˛? D 1. On the other hand,

q.>/ D
Y

y2Lnf?;>g
qy;˛y.>/ D

Y

y2Lnf?;>g
˛y:

We have supposed that q.>/ D m.>/ ¤ 0, hence:

log q.x/ D log q.>/�
X

y>x

log˛y .x 2 L/:

We set Q.x/ D log q.x/ and A.y/ D log˛y for every y 2 L. Then the last equality
becomes:

Q.x/ D Q.>/�
X

y>x

A.y/ .x 2 L/:

If we define Q0.x/ D Q.>/� Q.x/, we finally obtain:

Q0.x/ D
X

y>x

A.y/:

We recognize here the equation defining the Möbius transform of Q0, up to an
inversion of the order (dual order) [see (2.17)]. Hence, using (2.18):

A.y/ D
X

x>y

	.x; y/Q0.x/

with 	 defined by (2.19). Rewriting this with the original notation, we obtain:

log˛y D
X

x>y

	.x; y/
�

log q.>/� log q.x/
�
:
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Remarking that
P

x>y 	.x; y/ log q.>/ is zero for every y ¤ ?, because it
corresponds to the Möbius transform of a constant function [Remark 2.72(ii)], we
finally get:

˛y D
Y

x>y

q.x/�	.x;y/ .y 2 L n f?;>g/:

ut

Probability Measures on Distributive Lattices

Recall from Remark 2.19(v) that additive measures are characterized by the fact that
they satisfy the total monotonicity property with equality, in other words, they are
1-valuations. Therefore, it is natural to define probability measures on L by those
1-valuations P that satisfy P.?/ D 0, P.>/ D 1.

If L is distributive (hence modular), by Lemma 7.51(i) and (iv), we see that
there always exists an 1-valuation. The following theorem shows that probability
measures are those belief functions on L such that the support of their Möbius
transform lives on J .L/, the set of join-irreducible elements. This is a generalization
of the classical case L D 2X , where the focal sets of a probability measure are
singletons (see Remark 7.6).

Theorem 7.55 (When belief functions are probability measures) A belief func-
tion on a distributive lattice L is a probability measure if and only if the support of
its Möbius transform is included in J .L/.

Proof (/ Denoting by Bel the belief function, we have to prove that

Bel
� k_

iD1
xi

�
D

X

I�f1;:::;kg
I¤¿

.�1/jIjC1Bel
�^

i2I

xi

�
;

holds for every family x1; : : : ; xk 2 L, k > 2. Using the mapping � on L (Sect. 1.3.2)
defined by �.x/ D f j 2 J .L/ W j 6 xg, we have by assumption on m, the Möbius
transform of Bel:

Bel
� k_

iD1
xi

�
D

X

j2�
�Wk

iD1 xi

�
m. j/

D
X

j2Sk
iD1 �.xi/

m. j/
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D M
� k[

iD1
�.xi/

�

D
X

I�f1;:::;kg
I¤¿

.�1/jIjC1M
�\

i2I

�.xi/
�

D
X

I�f1;:::;kg
I¤¿

.�1/jIjC1
X

j2Ti2I �.xi/

m. j/

D
X

I�f1;:::;kg
I¤¿

.�1/jIjC1
X

j2�
�V

i2I xi

�
m. j/

D
X

I�f1;:::;kg
I¤¿

.�1/jIjC1Bel
�^

i2I

xi

�
;

where M is an additive measure on 2L whose distribution is m. The second and sixth
equality comes from the distributivity of L, and the fourth one from the fact that M
is a 1-valuation on 2L.

)/ Suppose there exists z 62 J .L/ such that m.z/ > 0, and take a smallest such
element. Define Bel0 on # z by Bel0.x/ D P

j2�.x/ m. j/ for all x 6 z. By (/, and

because # z is a distributive lattice, it follows that Bel0 is a probability measure on
#z. By assumption, letting �.z/ D f j1; : : : ; jkg,

Bel.z/ D Bel
� k_

iD1
ji
�

D
X

I�f1;:::;kg
I¤¿

.�1/jIjC1Bel
�^

i2I

ji
�
: (7.56)

On the other hand,

Bel.z/ D
X

x6z

m.x/ D m.z/C Bel0.z/

D m.z/C Bel0
� k_

iD1
ji
�

D m.z/C
X

I�f1;:::;kg
I¤¿

.�1/jIjC1Bel0
�^

i2I

ji
�
: (7.57)

Since Bel0 D Bel on #z n fzg, the comparison of (7.56) and (7.57) yields m.z/ D 0,
a contradiction. ut
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A similar result was proved by Zhou [359], where probability measures are defined
as 2-valuations.

Possibility and Necessity Measures

A necessity measure on L is a mapping Nec W L ! Œ0; 1� satisfying Nec.x ^ y/ D
min.Nec.x/;Nec.y// for all x; y 2 L, and Nec.?/ D 0, Nec.>/ D 1. Obviously a
necessity measure is a normalized capacity.

Theorem 7.38 can be generalized in the following way.

Theorem 7.56 (Barthélemy [18]) Let 	 be a function on L satisfying 	.?/ D 0

and 	.>/ D 1. Then 	 is a necessity measure if and only if 	 is a belief function
such that supp.m/, the support of its Möbius transform, is a chain in L.

The proof given for Theorem 7.38 can be used mutatis mutandis to this more general
case (the readers can also consult [18], which provides for the “if” part a different
proof).

We introduce possibility measures and possibility distributions, which will
permit to complement the results of Theorem 7.56. Possibility measures on L are
defined as conjugate (via a _-negation) of necessity measures on L, where L is
autodual, exactly as plausibility functions are conjugates of belief functions (see
also Remark 7.49). The following is easy to show.

Lemma 7.57 (Grabisch [167]) Let L be an autodual lattice and n be a _-negation.
The following holds.

(i) For any necessity measure N, its conjugate relative to n, … D Nec, satisfies

….x _ y/ D max.….x/;….y// .x; y 2 L/: (7.58)

(ii) Suppose … is a mapping on L satisfying ….?/ D 0, ….>/ D 1 and (7.58).
Then… is a possibility measure; i.e., the conjugate (relative to n) to a necessity

measure Nec given by Nec D …
�1

(conjugate relative to n�1).

Due to the above Lemma, one can equivalently define a possibility measure as a
mapping on L satisfying ….?/ D 0, ….>/ D 1 and (7.58).

Now, distributions arise naturally as the value taken by the measure on the
generating elements of the lattice.

Definition 7.58 Let L be an autodual distributive lattice, with J .L/ and M.L/
the set of its join-irreducible and meet-irreducible elements, respectively. The
possibility distribution of a possibility measure… on L is the mapping � W J .L/ !
Œ0; 1� defined by �. j/ D …. j/ for all j 2 J .L/, and the necessity distribution of a
necessity measure Nec is the mapping � W M.L/ ! Œ0; 1� defined by �.i/ D Nec.i/
for all i 2 M.L/.
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Using the mappings �; � (Sect. 1.3.2) on L defined by �.x/ D f j 2 J .L/ W j 6 xg
and �.x/ D fi 2 M.L/ W i > xg, we get

….x/ D max.�. j/ W j 2 �.x//; Nec.x/ D min.�.i/ W i 2 �.x// .x 2 L/:

Note that by definition of the necessity and possibility measures, we have neces-
sarily �. j/ D 1 for some j and �.i/ D 0 for some m. If … and Nec are related
through conjugation relative to a _-negation n, � and � are in bijection and related
as follows:

�. j/ D 1 � Nec.n. j// D 1 � �.ij/ (7.59)

�.i/ D 1 �….n�1.i// D 1 � �. ji/;

where ij D n. j/, and ji D n�1.i/. Given a necessity measure Nec, Eq. (7.59)
gives immediately the corresponding possibility distribution � . However, unlike the
classical case L D 2X, given a possibility distribution � , it is not immediate to find
the corresponding chain in L that is the support of the Möbius transform of Nec, the
necessity measure induced by � . The following theorem explains how to obtain it.

Theorem 7.59 (Grabisch [167]) Let L be an autodual and distributive lattice, and
n be a _-negation on L. Let � be a possibility distribution, and assume that the
join-irreducible elements of L are numbered such that �. j1/ < � � � < �. jr/ D 1.
Denote by Nec the corresponding necessity measure (relative to n). Then the Möbius
transform m of Nec is given by the following procedure:

(i) Going from jr to j1, at each step k D r; r � 1; : : : ; 2, select the smallest join-
irreducible element �k in �.n. jk�1// n �.n. jk//;

(ii) Then supp.m/ D f�r; �r _ �r�1; : : : ; �r _ � � � _ �2;>g, and

m.�r _ �r�1 _ � � � _ �k/ D �. jk/ � �. jk�1/; k D 1; : : : ; r; (7.60)

with �. j0/ D 0.

The proof, which is rather technical, is omitted (see [167]). We put an example from
the same reference, to illustrate the whole procedure.

Example 7.60 Let us consider the distributive autodual lattice given on Fig. 7.2.
Join-irreducible elements are a; b; c; d; e; f (in red), while meet-irreducible ones

x n.x/ x n.x/

a ˛ d �

b f e ı

c � f b

are ˛; b; �; ı; �; f . We take the following _-negation: Let us consider a possibility
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a

b

c

d e

f

a
b

c

d
e

f

α

γ

δ

Fig. 7.2 Example of an autodual distributive lattice L (right), with J .L/ (left)

distribution satisfying

�.c/ < �.d/ < �.e/ < �.a/ < �. f / < �.b/ D 1:

Let us apply the procedure of Theorem 7.59. For b, we have n.b/ D f D c_d_e_f ,
and for f , we have n. f / D b D a _ b. Hence the first join-irreducible element of the
sequence, �6, is a. Table 7.1 summarizes all the steps.

Table 7.1 Computation of supp.m/

Step k x n.x/ �.n.x// �k Chain

6 b f c; d; e; f a a

5 f b a; b c a _ c

4 a ˛ a; c; d; e; f b a _ c _ b

3 e ı a; b; c; d e a _ c _ b _ e

2 d � a; b; c; e d a _ c _ b _ e _ d

1 c � a; b; c; d; e f >

The support of m is in blue on Fig. 7.2. We deduce that:

�.b/ D 1

�. f / D 1 � m.a/

�.a/ D 1 � m.a/� m.a _ c/

�.e/ D 1 � m.a/� m.a _ c/� m.a _ c _ b/

�.d/ D 1 � m.a/� m.a _ c/� m.a _ c _ b/� m.a _ c _ b _ e/

�.c/ D 1 � m.a/� m.a _ c/� m.a _ c _ b/� m.a _ c _ b _ e/

� m.a _ c _ b _ e _ d/
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from which we deduce

m.a/ D �.b/� �. f /

m.a _ c/ D �. f /� �.a/

m.a _ c _ b/ D �.a/� �.e/
m.a _ c _ b _ e/ D �.e/� �.d/

m.a _ c _ b _ e _ d/ D �.d/� �.c/

and m.>/ D 1�m.a/�m.a_c/�m.a_c_b/�m.a_c_b_e/�m.a_c_b_e_d/ D
�.c/.

7.8.2 Infinite Spaces

The literature on belief functions defined on infinite spaces being rather limited
and the topic becoming rapidly complex, we limit ourselves to indicating some
literature.

A first important observation is that even if X becomes infinite, nothing changes
as far as the support of the mass distribution is finite. Otherwise, the way of
proceeding is very close to the usual framework of probability theory; i.e., one
endows X with an algebra or a �-algebra X , which is the set of measurable events.
The belief of nonmeasurable events can be computed using the notion of inner and
outer measure of classical measure theory (see Kramosil [216, Chap. 9]). Note also
that the general theory of random sets is a possible framework.

It is to be noted that Shafer himself provided a framework for belief functions on
infinite spaces already in his thesis [295], and also in [297].

An important contribution was done by Rébillé [273], concerning belief func-
tions on compact topological spaces. He generalized in this context the representa-
tion of the Choquet integral w.r.t. a belief function as the minimum of means over
the core (see (7.22) and Theorem 4.39) and as a mean of minima [Eq. (4.55)]. We
mention also the paper of Brüning and Denneberg [40] studying the extreme points
of the set of belief functions.

As we have already indicated, a measure-theoretic mathematical analysis of
possibility measures was done by de Cooman [70–72].

Lastly, although the topic is different, we again mention Kramosil [216,
Chaps. 11 and 14] who studied belief functions taking values in some Boolean
algebra, or with nonstandard values.



Appendix A
Tables

A.1 Bases and Transforms of Set Functions

Transform Basis

Möbius m
 .S/ D X

T�S

.�1/jSnTj
.T/ uT .S/ D
8
<

:

1; if S 	 T

0; otherwise

Co-Möbius
(commonality)

Lm
 .S/ D X

T�XnS

.�1/n�jTj
.T/ LuT .S/ D
8
<

:

.�1/jTj; if S \ T D ¿
0; otherwise

Conjugate
unanimity
games

U


.S/ D .�1/jSjC1

X

T�XnS

.�1/n�jTj
.T/ uT .S/ D
8
<

:

1; if S \ T ¤ ¿
0; otherwise.

Shapley
interaction

I
 .S/ D
X

K�X

jX n .S [ K/jŠjK n SjŠ
.n � s C 1/Š

.�1/jSnKj
.K/ bI
T .S/ D ˇ

jTj

jT\Sj

Banzhaf
interaction

I


B.S/ D

� 1

2

�n�s X

K�X

.�1/jSnKj
.K/ b
IB
T .S/ D

� 1

2

�
jTj

.�1/jTnSj

Fourier F
 .S/ Db
.S/ D 1

2n

X

K�X

.�1/jS\Kj
.K/ bF
T .S/ D �T .S/ D .�1/jS\Tj

Walsh W
 .S/ D 1

2n

X

K�X

.�1/jSnKj
.K/ wT .S/ D .�1/jTnSj

Yokote
.T ¤ ¿/

Yv .S/ D
X

L�X

.�1/jS\LjC1 .n � s � l/Š.s C l � 1/Š

nŠ
v.L/ �T .S/ D

8
<

:

1; if jS \ Tj D 1

0; otherwise

Table A.1 Linear invertible transforms and their associated bases
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A.2 Conversion Formulae Between Transforms

We summarize all formulas established in Chap. 2 for passing from one represen-
tation of a set function 
 to another. The readers can also consult [178], where
all conversion formulae between the Möbius, co-Möbius, interaction and Banzhaf
interaction transforms are proved (Tables A.2, A.3, A.4, and A.5).

The superscript �
 is omitted in m; Lm, etc. Cardinality of sets are indicated in
corresponding small letters. We recall that jXj D n.


 m Lm

.A/ D 
.A/

X

B�A

m.B/
X

B�XnA

.�1/b Lm.B/

m.A/ D X

B�A

.�1/a�b
.B/ m.A/
X

B�A

.�1/b�a Lm.B/
Lm.A/ D X

B�XnA

.�1/n�b
.B/
X

B�A

m.B/ Lm.A/

I.A/ D X

B�X

.�1/jAnBj

.n � a C 1/
�

n�a
jBnAj

� 
.B/
X

B�A

1

b � a C 1
m.B/

X

B�A

.�1/b�a

b � a C 1
Lm.B/

IB.A/ D
�1

2

�n�a X

B�X

.�1/jAnBj
.B/
X

B�A

�1

2

�b�a
m.B/

X

B�A

�

� 1

2

�b�a Lm.B/
Table A.2 Conversion formulae between 
;m, Lm, I, and IB

I IB


.A/ D X

D�X

ˇd
jA\Dj

I.D/
X

B�X

�1

2

�b
.�1/jBnAjIB.B/

m.A/ D X

B�A

Ba�bI.B/
X

B�A

�
� 1

2

�b�a
IB.B/

Lm.A/ D X

B�A

.�1/b�aBb�aI.B/
X

B�A

�1

2

�b�a
IB.B/

I.A/ D I.A/
X

B�A

1C .�1/b�a

.b � a C 1/2b�aC1
IB.B/

IB.A/ D X

B�A

� 1

2b�a�1
� 1

�
Bb�aI.B/ IB.A/

Table A.3 Conversion formulae between 
;m, Lm, I, and IB (ctd’)

Relations between the Fourier, Banzhaf interaction and Walsh transforms:

b
.A/ D
��1
2

�a
I
B.A/ D .�1/aW.A/
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 m b



.A/ D 
.A/
X

B�A

m.B/
X

B�X

.�1/jA\Bjb
.B/

m.A/ D X

B�A

.�1/a�b
.B/ m.A/ .�2/a X
B�A

b
.B/

b
.A/ D 1

2n

X

B�X

.�1/jA\Bj
.B/ .�1/a X
B�A

1

2b
m.B/ b
.A/

Table A.4 Conversion formulae between 
, m andb


v m Y

v.A/ D v.A/
X

B�A

m.B/
X

B W jB\AjD1

Y.B/

m.A/ D
X

B�A

.�1/a�bv.B/ m.A/ a.�1/aC1
X

B�A

Y.B/

Y.A/ D
X

B�X

.�1/jA\BjC1 .n � a � b/Š.a C b � 1/Š

nŠ
v.B/ .�1/aC1

X

B�A

1

b
m.B/ Y.A/

Table A.5 Conversion formulae between v, m and Y. These formulae are valid for games only
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187. S. Greco, B. Matarazzo, and R. Słowiński. Axiomatic characterization of a general utility
function and its particular cases in terms of conjoint measurement and rough-set decision
rules. Eur. J. of Operational Research, 158(2):271–292, 2004.

188. P. R. Halmos. Measure Theory. Springer Verlag, 1950.
189. P. Hammer, U. Peled, and S. Sorensen. Pseudo-Boolean functions and game theory. I: core

elements and Shapley value. Cahiers du CERO, 19:159–176, 1977.
190. P. L. Hammer and R. Holzman. On approximations of pseudo-Boolean functions. ZOR -

Methods and Models of Operations Research, 36:3–21, 1992.
191. P. L. Hammer and S. Rudeanu. Boolean Methods in Operations Research and Related Areas.

Springer, 1968.
192. G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Univ. Press, Cambridge,

1952.
193. J. C. Harsanyi. A simplified bargaining model for the n-person cooperative game. Interna-

tional Economic Review, 4:194–220, 1963.



References 459

194. G. Herden and G. Mehta. The continuous analogue and generalization of the classical
Birkhoff-Milgram theorem. Math. Social Sciences, 28:59–66, 1994.

195. J. E. Hirsch. An index to quantify an individual’s scientific research output. Proceedings of
the National Academy of Sciences, 102(46):16569–16572, 2005.

196. W. Hoeffding. A class of statistics with asymptotically normal distribution. Annals of
Mathematical Statistics, 19:293–325, 1948.

197. A. Honda and M. Grabisch. An axiomatization of entropy of capacities on set systems. Eur.
J. of Operational Research, 190:526–538, 2008.

198. C. K. Hsee. The evaluability hypothesis: An explanation for preference reversals between
joint and separate evaluations of alternatives. Organizational Behavior and Human Decision
Processes, 67:242–257, 1996.

199. S. Hurst, D. Miller, and J. Muzio. Spectral techniques in digital logic. Academic Press,
London, 1985.

200. L. Hurwicz. Some specification problems and applications to econometric models. Econo-
metrica, 19:343–344, 1951.

201. T. Ichiishi. Super-modularity: applications to convex games and to the greedy algorithm for
LP. J. Econom. Theory, 25:283–286, 1981.

202. J.-Y. Jaffray. Bayesian updating and belief functions. IEEE Tr. Syst., Man and Cybern.,
22:1144–1152, 1992.

203. D. Kahneman and A. Tversky. Prospect theory: an analysis of decision under risk.
Econometrica, 47:263–291, 1979.

204. A. Kandel and W. Byatt. Fuzzy sets, fuzzy algebra, and fuzzy statistics. Proc. of the IEEE,
66:1619–1639, 1978.

205. R. L. Keeney and H. Raiffa. Decision with Multiple Objectives. Wiley, New York, 1976.
206. D. G. Kendall. Foundations of a theory of random sets. In E. F. Harding and D. G. Kendall,

editors, Stochastic Geometry, pages 322–376. J. Wiley, New York, 1974.
207. J. M. Keynes. The general theory of employment. The Quarterly Journal of Economics,

51:209–223, 1937.
208. K. Kikuta and L. Shapley. Core stability in n-person games. Unpublished paper, 1986.
209. N. L. Kleinberg and J. H. Weiss. Equivalent n-person games and the null space of the Shapley

value. Mathematics of Operations Research, 10(2):233–243, 1985.
210. E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer Academic Publishers,

Dordrecht, 2000.
211. E. P. Klement, R. Mesiar, and E. Pap. A universal integral as common frame for Choquet and

Sugeno integral. IEEE Tr. on Fuzzy Systems, 18:178–187, 2010.
212. E. P. Klement, R. Mesiar, F. Spizzichino, and A. Stupňanová. Universal integrals based on
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recession, 14, 158, 160

conic hull, 13
conjunctive normal form, 368
consequence, 282
continuity (of preference), 299
convex

game, 34, 41
hull, 13
set, 13

convolution product
of functions, 100
of set functions, 97

cooperative game theory, 28, 59, 129, 146
core, 146, 226, 261, 315, 398

additivity properties, 156
bounded faces, 169
boundedness, 158
extremal rays, 161, 170
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extreme points, 154, 162
faces, 169
large, see large core
nonemptiness, 148, 157
of supermodular games, 155, 164
pointedness, 158
possibilistic, 423

minimal element, 425
totally monotone, 425

coverage
subset, 387
superset, 387

covering, 125
inclusion-exclusion, 125
irreducible, 127
Möbius, 125

covering relation, 9
criterion, 326

complementary, 366
substitutable, 366

cyclone, 342

decision
qualitative, 317
under multiple criteria, 326
under risk, 285, 286, 318
under uncertainty, 263, 285, 303, 321

decision theory, 28
decomposable model, 328

monotone, 327, 333
Dedekind number, 42
derivative

of a pseudo-Boolean function, 91
of a set function, 32

difference function, 36, 388
Dirac

game, 75
measure, 27

disjunctive normal form, 368
distance, 101
distortion function, 293, 297

inverse S-shape, 298
distribution function

decumulative, 191, 290
dominance of proportion, 338
doubt

function, 390
measure, 389

downset, 10
duality theorem, 16
Dutch book, 303, 412

element
greatest, 8
join-irreducible, 11, 434
least, 8
maximal, 8
meet-irreducible, 11, 434
minimal, 8

Ellsberg paradox, 308, 314, 316
epistemic view of sets, 391
equivalence, see relation
essential infimum, 191, 250
essential supremum, 191, 250
evaluability, 338
evidence theory, 379
expected utility, 287, 306

˛-maxmin, 315
Choquet, 310
maxmin, 315
subjective, 306
Sugeno, 321

expected value criterion, 284
extension

Lovász, 116, 354, 361
multilinear, 110
Owen, 32, 109, 354, 361

extreme point, 14
of at most 2-additive normalized capacities,

89
of normalized capacities, 82
of the core, 154

face (of a polyhedron), 15
facet, 15
Farkas’ Lemma, 149, 150, 153,

161
Farkas’ lemma, 15
field, 132
filter, 10

principal, 10
focal set, 380
Fourier

basis, 97
transform (of functions), 22, 99
transform (of set functions), 97, 119, 236,

364
frame of discernment, 379
function

k-monotone, 428
F-measurable, 191
cardinality, 62

inverse of, 63



468 Index

comonotonic, see comonotonic
concave, 18
convex, 18
generator, 62

Bernoulli, 62
Zeta, 62

nonmeasurable, 272
parity, 96
positively homogeneous, 18
simple, 190, 202
subadditive, 18
superadditive, 18
superincreasing, 373
survival, 191
totally monotone, 428
Walsh, see Walsh
weakly increasing, 371

functional
maxitive, 221
minitive, 221
modular, 221

fuzzy
integral, 195
measure, 28

game, 26
1-alternating, 34
1-monotone, 34
k-additive, 73
k-alternating, 34–41
k-monotone, 34–41, 53, 67, 71, 112, 141

in the sense of Choquet, 36
p-symmetric, 74
2-additive, 249
absolute value of, 81
additive, 52, 140
at most k-additive, 73
bicooperative, 353
concave, 34
conjugate, 53
convex, 34, 41, 133, 139
Dirac, 75
exact, 174, 176
extendable, 180
identity, 75
maxitive, 35, 36, 43
minitive, 35, 36, 43
modular, 34, 140
monotone, 52
Myerson’s restricted, 276
norm of, 81
on a lattice, 427
on a set system, 130

simple, 42
subadditive, 34
subconvex, 177
submodular, 34
superadditive, 34, 36
supermodular, 34, 41, 78, 133, 138, 155,

164, 172, 175, 184, 221, 226,
276–277

supermodular for partitions, 177
symmetric, 74
totally alternating, 34–41
totally balanced, see totally balanced
totally monotone, 34–41, 44, 53, 79, 112,

141
unanimity, 42, 54, 75, 89

conjugate, 76, 118
vector space of, 75
with precedence constraint, 137
zero-normalized, 26, 78

graph, 21

Hölder’s theorem, 329
Harsanyi dividends, 51
Hasse diagram, 10
hedging effect, 312
height

of a poset, 9
of an element, 9

Hirsch index, 210
home bias, 309
horizontal

max-additivity, 217, 241
median-additivity, 219, 243
min-additivity, 217, 241

ideal, 10
principal, 10

idempotent calculus, 417
importance index, 358

Banzhaf, 358
Shapley, 358

imputation, 179
incidence, 387

function, 388
incomparable, 7
independence

in decision under risk, 287
comonotonic, 311

mutual preference (in MAUT), 333
preference (in MAUT), 333
weak (in MCDM), 332
weak difference, 335, 355
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index
Barlow-Proschan, 31
importance, see importance index
interaction, see interaction index
Sobol’, 364

infimum, 8
inner product, 93, 95
integral

Šipoš, 200
Benvenuti, 271
Choquet, see Choquet integral
Choquet-like, 271
concave, 260, 265
decomposition, 265, 272
Murofushi, 271
Shilkret, 259, 266, 270
Sugeno, see Sugeno integral
Sugeno-Weber, 271
universal, 270

interaction
between criteria, 345
index, 358, 366

Banzhaf, 359
Shapley, 359

index (of an aggregation function), 361
operator, 68

Banzhaf, 71
transform, 58, 65, 113–117, 119, 236, 359

Banzhaf, 59, 70, 103, 113–116, 119,
359

exact bounds of, 87
interpolation

multilinear, 347
parsimonious, 347

inverse problem, 123
involution, 428
isomorphism, 8
isotone, 8

join, 8
Jordan-Dedekind chain condition, 10

Karush-Kuhn-Tucker conditions, 19
Ky Fan distance, 195

L-estimator, 248
L-norm, 21
large core, 174–176, 179, 261
lattice, 8, 427

autodual, 428
Boolean, 9

complemented, 9
complete, 8
distributive, 11, 135, 161, 162
lower semimodular, 11
modular, 11
polynomial

weighted, 368
upper semi-modular, 11

level
neutral, 339
satisfactory, 341

level of conflict, 392
likelihood insensitivity, 298
linear program, 15

dual, 16
Lorenz majorization, 422
loss aversion, 300
lottery, 286

mixture, 287, 319
sure, 286

lower bound, 8
lower envelope, 174, 315, 399, 419

Möbius
covering, 125
function, 51
inverse, 49
operator, 61
transform, 49, 65, 71, 76, 113, 118, 125,

143, 235, 381, 435
exact bounds of, 84
local, 403
ordinal, 237

MACBETH, 341, 346
macro-element, 159
marginal vector, 154, 181
mass distribution, 380

contradictory, 392
decomposition, 397
simple, 384, 397
vacuous, 384

mass of the empty set, 384, 395
matrix

positive definite, 20
positive semidefinite, 20
totally unimodular, 20, 83
vertex-arc incidence, 21

matroid, 31
maximum

ordered weighted, 252
weighted, 252

measure, 27, 132
belief, see belief
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counting, 27
Dirac, 27
disbelief, 389, 419
distorted Lebesgue, 255
doubt, 389
finite, 46, 132
fuzzy, 28
idempotent, 417
infinite, 46
Lebesgue, 27, 255, 258
monotonic, 28
necessity, see necessity
nonadditive, 28
plausibility, see plausibility
possibility, see possibility
potential certainty, 416
probability, see probability
signed, 27

measurement
difference, 334
extensive, 329
ordinal, 329, 330, 367

measurement theory, 328
meet, 8
minimum

ordered weighted, 252
weighted, 252

Monge algorithm, 168, 279
monotone cover, 33
monotonicity

of preference, 284, 316
of the Sugeno integral, 370

multilinear model, 354, 361
multiple priors, 315

necessity
distribution, 434
measure, 43, 56, 415

on a lattice, 434
negative part

of a function, 196
of a game, 80

norm, 21
composition, 81
variation, 134

normal collection, 169
minimal, 171
nested, 171
short, 171

null set, 133

one-point extension, 136
ontic view of sets, 391
operations research, 30
operator, 60

Banzhaf interaction, 71
cardinality, 62
co-Möbius, 64
interaction, 68
inverse Bernoulli, 62
Zeta, 61

optimism, 297–299, 322
optimistic model, 319
optimization

combinatorial, 31, 147, 353
convex, 19

order
binary, 77
dual, 8
lexicographic, 331
leximax, 373
leximin, 373
linear, 7
partial, 7
total, 7

order statistic, 247
order-dense, 331
ordered set

partially, 8
ordered vector space, 21
outcome, 282

Pareto frontier, 345
Parseval’s identity, 97, 100
partition, 9, 74

interadditive, 125
pessimism, 297–299, 322
pessimistic model, 319
pignistic transform, 412, 419, 421
plausibility

function, 381
conditional, 400
on a lattice, 428

measure, 44, 48, 55, 57, 388
polyhedron, 14

integer, 20
pointed, 14

polymatroid, 31
polytope, 14

chain, 87
of at most k-additive capacities, 89
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of belief measures, 88
of normalized capacities, 81
order, 87

poset, 8
autodual, 8
dual, 8

positive part
of a function, 196
of a game, 80

possibility
distribution, 43, 414

guaranteed, 416
more specific, 414
on a lattice, 434

measure, 43, 56, 414
guaranteed, 58, 415, 417, 419
on a lattice, 434

potential surprise, 417
preference

relation, 283
representation, 284

preorder, 7
weakly independent, 332
weakly separable, 332

principle of inclusion-exclusion, 35
probabilistic sophistication, 309
probability

imprecise, 147, 314, 419
measure, 27

compatible, 398
distorted, 47, 293
on a distributive lattice, 432
simple, 286

upper and lower, 379, 402, 408
prospect theory, 300, 314, 350
prosperity property, 177
pseudo-addition, 271
pseudo-Boolean function, 91

expected value, 97
Möbius representation, 93
standard representation, 92
variance, 97

pseudo-difference, 271
pseudo-multiplication, 270

quadratic program, 20, 105
quotient set, 8

Radon-Nikodym derivative, 257
random set, 387, 396
rank dependent utility, 294
rank function (of a polymatroid), 31, 147

rank tradeoff
consistency, 299, 311
indifference, 299, 310

ray, 13
extremal, 13, 14, 78, 79, 161, 170

rearrangement, 258
reference dependence, 300
reference level, 338
reflection effect, 300
reflexive, see relation
relation

binary, 7
antisymmetric, 7
asymmetric, 8
codual, 342
complete, 7
reflexive, 7
symmetric, 8
transitive, 7

equivalence, 8
preference, see preference
quaternary, 334

relational system, 328
reliability, 31

function, 32
restricted cooperation, 130, 137
Riesz space, 21

of games, 80
ring, 131
risk aversion, 291, 297
risk seeking, 291
rule of combination

nonnormalized, 394
normalized (Dempster), 392

Savages’ omelette, 319
scale, 329

absolute, 330
bipolar, see bipolar
bounded, 340
interval, 330
nominal, 330
ordinal, 330
qualitative, 196
ratio, 330
unipolar, see unipolar

selectope, 181, 398, 419
selector, 181

consistent, 182
selector value, 181
semicopula, 271
semilattice, 8
semivalue, 123
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separability
weak, 332, 333

separating hyperplane, 13
set function, 26, 91
� -additive, 131
k-monotone, 67, 71

in the sense of Choquet, 36
additive, 26
at most k-additive, 101
conjugate, 26, 71
constant, 53, 67, 71
continuous, 132
continuous from above, 131
continuous from below, 131
dual, 26
grounded, 26
monotone, 26, 67, 71
normalized, 26
self-conjugate, 26
signed, 353

set system, 130, 157–174
(non)degenerate, 159
closed under union and intersection, 135
connected, 157
regular, 136, 165
weakly union-closed, 135, 273

Shapley value, 59, 107, 123, 183, 358, 412
sharing system, 182

uniform, 183
sharing value, 182, 413
sieve formula, 35
signature, 32
signum function, 2
simple support function, 43
stable set, 179
standard gamble, 288

consistency, 289
dominance, 289
solvability, 289

standard sequence, 334
state of nature, 282
statistical estimator, 247
status quo, 300
stochastic dominance, 211, 214, 264, 269

of lotteries, 290, 294
subdifferential, 19
subgame, 174
subjective probability, 285
sublattice, 9
Sugeno integral, 193, 270, 318, 369, 374

asymmetric, 202
characterization, 244
symmetric, 202, 207, 211

sum
bounded, 44
probabilistic, 44

superdifferential, 19, 227, 264
support (of a function), 1
support function, 19, 168, 227
supremum, 8
sure-thing principle, 307, 321,

333
symmetric

maximum, 201
minimum, 207
part of a relation, 8

t-conorm, 44
Łukasiewicz, 44
Archimedean, 45
drastic, 46
nilpotent, 45
strict, 45
Sugeno-Weber, 46

t-norm, 45, 271
Taylor expansion, 114
top, 8
total variation, 241, 360
totally balanced

cover, 175, 264
game, 174

tradeoff
consistency, 307
indifference, 307

transferable belief, 411
transform, 117

Banzhaf interaction, see interaction
co-Möbius, 55, 58, 61, 71, 113, 118, 235,

382
Fourier, see Fourier
interaction, see interaction
invertible, 58
Laplace, 22, 256
linear, 58
Möbius, see Möbius
Zeta, 58

transformation, 58
admissible (for scales), 330

transitive, see relation
translation invariant, 197

uncertainty, 29
aversion, 263, 314

unipolar
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bivariate model, 337
scale, 339

upper bound, 8
upset, 10
utility function, 285, 327

concave, 291

value, 181
value function, 327
vertex, 14
veto criterion, 345

Walsh
basis, 93, 101, 109, 119
function, 93, 94, 96, 100

Weber set, 154, 163, 168, 184
additivity properties, 156

Yaari’s model, 296
Yokote

basis, 120
transform, 120


	Foreword
	Preface
	Contents
	1 Introduction
	1.1 Notation
	1.2 General Technical Results
	1.3 Mathematical Prerequisites
	1.3.1 Binary Relations and Orders
	1.3.2 Partially Ordered Sets and Lattices
	1.3.3 Cones and Convex Sets
	1.3.4 Linear Inequalities and Polyhedra
	1.3.5 Linear Programming
	1.3.6 Cone Duality
	1.3.7 Support Functions of Convex Sets
	1.3.8 Convex Optimization and Quadratic Programming
	1.3.9 Totally Unimodular Matrices and PolyhedronIntegrality
	1.3.10 Riesz Spaces
	1.3.11 Laplace and Fourier Transforms


	2 Set Functions, Capacities and Games
	2.1 Set Functions and Games
	2.2 Measures
	2.3 Capacities
	2.4 Interpretation and Usage
	2.4.1 In Decision and Game Theory
	2.4.2 In Operations Research
	Combinatorial Optimization
	Reliability


	2.5 Derivative of a Set Function
	2.6 Monotone Cover of a Game
	2.7 Properties
	2.8 Main Families of Capacities
	2.8.1 0-1-Capacities
	2.8.2 Unanimity Games
	2.8.3 Possibility and Necessity Measures
	2.8.4 Belief and Plausibility Measures
	2.8.5 Decomposable Measures
	2.8.6 λ-Measures

	2.9 Summary
	2.10 The Möbius Transform
	2.10.1 Properties
	2.10.2 Möbius Transform of Remarkable Gamesand Capacities
	Unanimity Games
	0-1-Capacities
	Belief and Plausibility Measures
	Possibility and Necessity Measures
	λ-Measures


	2.11 Other Transforms
	2.12 Linear Invertible Transforms
	2.12.1 Definitions and Examples
	2.12.2 Generator Functions, Cardinality Functions
	2.12.3 Inverse of Cardinality Operators
	2.12.4 The Co-Möbius Operator
	2.12.5 The Interaction Operator
	2.12.6 The Banzhaf Interaction Operator
	2.12.7 Transforms of Conjugate Set Functions

	2.13 k-Additive Games
	2.14 p-Symmetric Games
	2.15 Structure of Various Sets of Games
	2.15.1 The Vector Space of Games
	2.15.2 The Cone of Capacities
	2.15.3 The Cone of Supermodular Games
	2.15.4 The Cone of Totally Monotone Nonnegative Games
	2.15.5 The Riesz Space of Games
	2.15.6 The Polytope of Normalized Capacities
	2.15.7 The Polytope of Belief Measures
	2.15.8 The Polytope of At Most k-Additive Normalized Capacities

	2.16 Polynomial Representations
	2.16.1 Bases of PB(n)
	2.16.2 The Fourier Transform
	2.16.3 Approximations of a Fixed Degree
	Approximation of Degree 1: Approximation of a Game by an Additive Game

	2.16.4 Extensions of Pseudo-Boolean Functions
	The Owen Extension
	The Lovász Extension


	2.17 Transforms, Bases and the Inverse Problem
	2.17.1 Transforms and Bases
	2.17.2 The Inverse Problem

	2.18 Inclusion-Exclusion Coverings
	2.19 Games on Set Systems
	2.19.1 Case Where X Is Arbitrary
	Null Sets
	Supermodular and Convex Games
	The Variation Norm of a Game

	2.19.2 Case Where X Is Finite
	Set Systems Closed Under Union and Intersection
	Weakly Union-Closed Set Systems
	Regular Set Systems
	Comparisons and Further Remarks
	Supermodular and Convex Games
	Modular and Additive Games
	k-Monotone and Totally Monotone Games



	3 The Core and the Selectope of Games
	3.1 Definition and Interpretations of the Core
	3.2 The Core of Games on (N,2N)
	3.2.1 Nonemptiness of the Core
	3.2.2 Extreme Points of the Core
	3.2.3 Additivity Properties

	3.3 The Core of Games on Set Systems
	3.3.1 Nonemptiness of the Core
	3.3.2 Boundedness
	3.3.3 Extremal Rays
	3.3.4 Extreme Points
	3.3.5 Faces
	3.3.6 Bounded Faces

	3.4 Exact Games, Totally Balanced Games, Large Cores and Stable Sets
	3.5 The Selectope

	4 Integrals
	4.1 Simple Functions
	4.2 The Choquet and Sugeno Integrals for Nonnegative Functions
	4.3 The Case of Real-Valued Functions
	4.3.1 The Choquet Integral
	4.3.2 The Sugeno Integral

	4.4 The Choquet and Sugeno Integrals for Simple Functions
	4.4.1 The Choquet Integral of Nonnegative Functions
	4.4.2 The Sugeno Integral of Nonnegative Functions
	4.4.3 The Case of Real-Valued Functions

	4.5 The Choquet and Sugeno Integrals on Finite Sets
	4.5.1 The Case of Nonnegative Functions
	4.5.2 The Case of Real-Valued Integrands
	4.5.3 The Case of Additive Capacities

	4.6 Properties
	4.6.1 The Choquet Integral
	Elementary Properties
	Comonotonic Additivity
	Horizontal Additivity
	Comonotonic Modularity
	Concavity

	4.6.2 The Sugeno Integral

	4.7 Expression with Respect to the Möbius Transform and Other Transforms
	4.7.1 The Choquet Integral
	4.7.2 The Sugeno Integral

	4.8 Characterizations
	4.8.1 The Choquet Integral
	4.8.2 The Sugeno Integral

	4.9 Particular Cases
	4.9.1 The Choquet Integral
	4.9.2 The Sugeno Integral

	4.10 The Choquet Integral on the Nonnegative Real Line
	4.10.1 Computation of the Choquet Integral
	4.10.2 Equimeasurable Rearrangement

	4.11 Other Integrals
	4.11.1 The Shilkret Integral
	4.11.2 The Concave Integral
	4.11.3 The Decomposition Integral
	4.11.4 Pseudo-Additive Integrals, Universal Integrals

	4.12 The Choquet Integral for Nonmeasurable Functions

	5 Decision Under Risk and Uncertainty
	5.1 The Framework
	5.1.1 The Components of a Decision Problem
	5.1.2 Introduction of Probabilities
	5.1.3 Introduction of Utility Functions

	5.2 Decision Under Risk
	5.2.1 The Expected Utility Criterion
	5.2.2 Stochastic Dominance
	5.2.3 Risk Aversion
	5.2.4 The Allais Paradox
	5.2.5 Transforming Probabilities
	5.2.6 Rank Dependent Utility
	5.2.7 Prospect Theory

	5.3 Decision Under Uncertainty
	5.3.1 The Expected Value Criterion and the Dutch Book Argument
	5.3.2 The Expected Utility Criterion
	5.3.3 The Ellsberg Paradox
	5.3.4 Choquet Expected Utility
	5.3.5 Ambiguity and Multiple Priors

	5.4 Qualitative Decision Making
	5.4.1 Decision Under Risk
	5.4.2 Decision Under Uncertainty


	6 Decision with Multiple Criteria
	6.1 The Framework
	6.2 Measurement Theory
	6.2.1 The Fundamental Problem of Measurement
	6.2.2 Main Types of Scales
	6.2.3 Ordinal Measurement
	6.2.4 Difference Measurement

	6.3 Affect, Bipolarity and Reference Levels
	6.3.1 Bipolarity
	6.3.2 Reference Levels
	6.3.3 Bipolar and Unipolar Scales

	6.4 Building Value Functions with the MACBETH Method
	6.4.1 The MACBETH Method
	6.4.2 Determination of the Value Functions

	6.5 Summary of the Construction of Value Functions
	6.6 The Weighted Arithmetic Mean as an Aggregation Function
	6.7 Towards a More General Model of Aggregation
	6.7.1 The Unipolar Case
	6.7.2 The Bipolar Case

	6.8 The Multilinear Model
	6.9 Summary on the Construction of the Aggregation Function
	6.10 Importance and Interaction Indices
	6.10.1 Importance and Interaction Indices for a Capacity
	6.10.2 Importance and Interaction Indices for an Aggregation Function
	6.10.3 A Statistical Approach: The Sobol' Indices
	6.10.4 The 2-Additive Model

	6.11 The Case of Ordinal Measurement
	6.11.1 The Emergence of the Sugeno Integral Model
	6.11.2 Monotonicity Properties of the Sugeno Integral Model
	6.11.3 Lexicographic Refinement


	7 Dempster-Shafer and Possibility Theory
	7.1 The Framework
	7.1.1 Dempster's Upper and Lower Probabilities

	7.2 Shafer's Evidence Theory
	7.2.1 The Case Where m()>0
	7.2.2 Kramosil's Probabilistic Approach
	7.2.3 Random Sets
	7.2.4 Ontic vs. Epistemic View of Sets

	7.3 Dempster's Rule of Combination
	7.3.1 The Rule of Combination in the Framework of Evidence Theory
	7.3.2 The Normalized and the Nonnormalized Rules
	To Normalize or Not to Normalize?
	The m()>0 Issue Again and the Nonnormalized Rule
	The Combination Rule in the Framework of Random Sets

	7.3.3 Decomposition of Belief Functions into Simple Belief Functions

	7.4 Compatible Probability Measures
	7.5 Conditioning
	7.5.1 The General Conditioning Rule
	7.5.2 The Bayes' and Dempster-Shafer Conditioning Rules

	7.6 The Transferable Belief Model
	7.7 Possibility Theory
	7.7.1 The Framework
	7.7.2 Link with Dempster-Shafer Theory
	7.7.3 Links Between Possibility Measures and Probability Measures
	7.7.4 The Possibilistic Core and Totally Monotone Anticore

	7.8 Belief Functions and Possibility Measures on Lattices and Infinite Spaces
	7.8.1 Finite Lattices
	Belief Functions
	Plausibility Functions
	k-Monotone and Totally Monotone Functions
	Properties of Belief Functions
	Probability Measures on Distributive Lattices
	Possibility and Necessity Measures

	7.8.2 Infinite Spaces


	A Tables
	A.1 Bases and Transforms of Set Functions
	A.2 Conversion Formulae Between Transforms

	List of Symbols
	References
	Index

